Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Spike-timing dependent plasticity (STDP) is a form of associative synaptic modification which depends on the respective timing of pre- and post-synaptic spikes. The biophysical mechanisms underlying this form of plasticity are currently not known. We present here a biophysical model which captures the characteristics of STDP, such as its frequency dependency, and the effects of spike pair or spike triplet interactions. We also make links with other well-known plasticity rules. A simplified phenomenological model is also derived, which should be useful for fast numerical simulation and analytical investigation of the impact of STDP at the network level.
This work evaluates the capability of a spiking cerebellar model embedded in different loop architectures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom) using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity (long-term potentiation and long-term depression) to adapt and cope with perturbations in the manipulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on the employed control architecture. The implemented cerebellar model managed to adapt in the three control architectures to different dynamics and kinematics providing corrective actions for more accurate movements. According to the obtained results, coupling both control architectures (forward&recurrent) provides benefits of the two of them and leads to a higher robustness against noise.
This paper proposes a supervised training algorithm for Spiking Neural Networks (SNNs) which modifies the Spike Timing Dependent Plasticity (STDP)learning rule to support both local and network level training with multiple synaptic connections and axonal delays. The training algorithm applies the rule to two and three layer SNNs, and is benchmarked using the Iris and Wisconsin Breast Cancer (WBC) data sets. The effectiveness of hidden layer dynamic threshold neurons is also investigated and results are presented.
Hybrid synapses widely exist in the brain neural system, but how memristive and plastic chemical synapses cooperatively modulate the collective dynamics of neurons remains largely unknown. Here, we constructed self-organized networks with two heterogeneous FitzHugh–Nagumo (FHN) neurons coupled with memristive and chemical synapses, wherein the chemical synapse is modulated by the spike-timing-dependent plasticity (STDP) rule. Additionally, three kinds of network models involving excitatory–excitatory (E–E) neurons, high excitatory–inhibitory (high E–I) neurons and low excitatory–inhibitory (low E–I) neurons were constructed. The modulation of memristive synapses on the structure and dynamics of self-organized neuronal networks is greatly dependent on model selection. Stronger coupling of memristive synapses induces consistently more stable network structure and enhanced network synchronization in the E–E and high E–I models but has complex effects on the low E–I neuronal network. In contrast, increasing the closing rate of memristive synapses has little effect on the E–E and high E–I networks but can accelerate the self-organization process and result in more complex firing patterns and weaker synchronization in the low E–I network. These results provide further understanding of the mechanism of the self-organized neuronal network dynamics underlying hybrid synapses and neuronal excitation.