Static random-access memory (SRAM) is an essential component in the architecture of modern microprocessors and VLSI circuits. The problems of high power consumption, large area, circuit complexity, and data stability against noise are among the most important indicators of performance and obstacles to the current use of SRAM. Ternary, quaternary, and higher-order logic (MLV) systems have shown the potential in overcoming these limitations in increasing the information density compared to the traditional binary system. The quantum dot channel field-effect transistor (QDC-FET) and quantum well Spatial Wavefunction Switched field-effect transistor (SWS-FET) are a new alternative with multiple operating states, low power consumption, and smaller footprints. This work presents a new four-state SRAM design that uses SWS-FET and compares it with Voltage-Mode CMOS Quaternary logic design. In addition, this work studies the noise margin in the memory circuit of the quadrilateral logic system and its effect on data stability. Furthermore, this study shows the reliability of quaternary SRAM design by evaluating the impact of errors.