Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We find explicitly the multiplicities in the (mixed) trace cocharacter sequence of two 3 × 3 matrices over a field of characteristic 0 and show that asymptotically they behave as polynomials of seventh degree. As a consequence we obtain also the multiplicities of certain irreducible characters in the cocharacter sequence of the polynomial identities of 3 × 3 matrices.
The action of the Bernstein operators on Schur functions was given in terms of codes by Carrell and Goulden (2011) and extended to the analog in Schur Q-functions in our previous work. We define a new combinatorial model of extended codes and show that both of these results follow from a natural combinatorial relation induced on codes. The new algebraic structure provides a natural setting for Schur functions indexed by compositions.
The main goal is to find the Homfly polynomial of a link formed by decorating each component of the Hopf link with the closure of a directly oriented tangle. Such decorations are spanned in the Homfly skein of the annulus by elements Qλ, depending on partitions λ. We show how the 2-variable Homfly invariant <λ, μ> of the Hopf link arising from decorations Qλ and Qμ can be found from the Schur symmetric function sμ of an explicit power series depending on λ. We show also that the quantum invariant of the Hopf link coloured by irreducible sl(N)q modules Vλ and Vμ, which is a 1-variable specialisation of <λ, μ>, can be expressed in terms of an N × N minor of the Vandermonde matrix (qij).
In this paper, we relate Schur functions and a linear skein of annulus derived from the Homfly polynomail. Using this relations, we define topological invariants of 3-manifolds from the Homfly polynomial.