Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models

    While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.