Objective: To demonstrate the feasibility of using a computerized system to detect the onset of a seizure and, in response, initiate Vagus nerve stimulation (VNS) in patients with medically refractory epilepsy. Methods: We designed and built a non-invasive, computerized system that automatically initiates VNS following the real-time detection of a pre-identified seizure or epileptiform discharge. The system detects these events through patient-specific analysis of the scalp electroencephalogram (EEG) and electrocardiogram (ECG) signals. Results: We evaluated the performance of the system on 5 patients (A-E). For patients A and B the computerized system initiated VNS in response to seizures; for patients C and D the system initiated VNS in response to epileptiform discharges; and for patient E neither seizures nor epileptiform discharges were observed during the evaluation period. During the 81 hour clinical test of the system on patient A, the computerized system detected 5/5 seizures and initiated VNS within 5 seconds of the appearance of ictal discharges in the EEG; VNS did not seem to alter the electrographic or behavioral characteristics of the seizures in this case. During the same testing session the computerized system initiated false stimulations at the rate of 1 false stimulus every 2.5 hours while the subject was at rest and not ambulating. During the 26 hour clinical test of the system on patient B, the computerized system detected 1/1 seizures and initiated VNS within 16 seconds of the appearance of ictal discharges; VNS did not alter the electrographic duration of the seizure but decreased anxiety and increased awareness during the post-seizure recovery phase. During the same testing session the computerized system did not declare any false detections. Significance: Initiating Vagus nerve stimulation soon after the onset of a seizure may abort or ameliorate seizure symptoms in some patients; unfortunately, a significant number of patients cannot initiate VNS by themselves following the start of a seizure. A system that automatically couples automated detection of seizure onset to initiation of VNS may be helpful for seizure treatment.
A closed-loop system for the automated detection and control of epileptic seizures was created and tested in three Genetic Absence Epilepsy Rats from Strasbourg (GAERS) rats. In this preliminary study, a set of four EEG features were used to detect seizures and three different electrical stimulation strategies (standard (130 Hz), very high (500 Hz) and ultra high (1000 Hz)) were delivered to terminate seizures. Seizure durations were significantly shorter with all three stimulation strategies when compared to non-stimulated (control) seizures. We used mean seizure duration of epileptiform discharges persisting beyond the end of electrical stimulation as a measure of stimulus efficacy. When compared to the duration of seizures stimulated in the standard approach (7.0 s ± 10.1), both very high and ultra high frequency stimulation strategies were more effective at shortening seizure durations (1.3 ± 2.2 s and 3.5 ± 6.4 s respectively). Further studies are warranted to further understand the mechanisms by which this therapeutic effect may be conveyed, and which of the novel aspects of the very high and ultra high frequency stimulation strategies may have contributed to the improvement in seizure abatement performance when compared to standard electrical stimulation approaches.
Automatic seizure detection is of great significance in the monitoring and diagnosis of epilepsy. In this study, a novel method is proposed for automatic seizure detection in intracranial electroencephalogram (iEEG) recordings based on kernel collaborative representation (KCR). Firstly, the EEG recordings are divided into 4s epochs, and then wavelet decomposition with five scales is performed. After that, detail signals at scales 3, 4 and 5 are selected to be sparsely coded over the training sets using KCR. In KCR, l2-minimization replaces l1-minimization and the sparse coefficients are computed with regularized least square (RLS), and a kernel function is utilized to improve the separability between seizure and nonseizure signals. The reconstructed residuals of each EEG epoch associated with seizure and nonseizure training samples are compared and EEG epochs are categorized as the class that minimizes the reconstructed residual. At last, a multi-decision rule is applied to obtain the final detection decision. In total, 595 h of iEEG recordings from 21 patients with 87 seizures are employed to evaluate the system. The average sensitivity of 94.41%, specificity of 96.97%, and false detection rate of 0.26/h are achieved. The seizure detection system based on KCR yields both a high sensitivity and a low false detection rate for long-term EEG.
Automatic seizure detection technology is of great significance for long-term electroencephalogram (EEG) monitoring of epilepsy patients. The aim of this work is to develop a seizure detection system with high accuracy. The proposed system was mainly based on multifractal analysis, which describes the local singular behavior of fractal objects and characterizes the multifractal structure using a continuous spectrum. Compared with computing the single fractal dimension, multifractal analysis can provide a better description on the transient behavior of EEG fractal time series during the evolvement from interictal stage to seizures. Thus both interictal EEG and ictal EEG were analyzed by multifractal formalism and their differences in the multifractal features were used to distinguish the two class of EEG and detect seizures. In the proposed detection system, eight features (α0, αmin, αmax, Δα, f(αmin), f(αmax), Δf and R) were extracted from the multifractal spectrums of the preprocessed EEG to construct feature vectors. Subsequently, relevance vector machine (RVM) was applied for EEG patterns classification, and a series of post-processing operations were used to increase the accuracy and reduce false detections. Both epoch-based and event-based evaluation methods were performed to appraise the system's performance on the EEG recordings of 21 patients in the Freiburg database. The epoch-based sensitivity of 92.94% and specificity of 97.47% were achieved, and the proposed system obtained a sensitivity of 92.06% with a false detection rate of 0.34/h in event-based performance assessment.
The goal of this study is to provide a seizure detection algorithm that is relatively simple to implement on a microcontroller, so it can be used for an implantable closed loop stimulation device. We propose a set of 11 simple time domain and power bands features, computed from one intracranial EEG contact located in the seizure onset zone. The classification of the features is performed using a random forest classifier. Depending on the training datasets and the optimization preferences, the performance of the algorithm were: 93.84% mean sensitivity (100% median sensitivity), 3.03 s mean (1.75 s median) detection delays and 0.33/h mean (0.07/h median) false detections per hour.
Automatic seizure detection has played an important role in the monitoring, diagnosis and treatment of epilepsy. In this paper, a patient specific method is proposed for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. This seizure detection method is based on sparse representation with online dictionary learning and elastic net constraint. The online learned dictionary could sparsely represent the testing samples more accurately, and the elastic net constraint which combines the 11-norm and 12-norm not only makes the coefficients sparse but also avoids over-fitting problem. First, the EEG signals are preprocessed using wavelet filtering and differential filtering, and the kernel function is applied to make the samples closer to linearly separable. Then the dictionaries of seizure and nonseizure are respectively learned from original ictal and interictal training samples with online dictionary optimization algorithm to compose the training dictionary. After that, the test samples are sparsely coded over the learned dictionary and the residuals associated with ictal and interictal sub-dictionary are calculated, respectively. Eventually, the test samples are classified as two distinct categories, seizure or nonseizure, by comparing the reconstructed residuals. The average segment-based sensitivity of 95.45%, specificity of 99.08%, and event-based sensitivity of 94.44% with false detection rate of 0.23/h and average latency of -5.14 s have been achieved with our proposed method.
Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.
Persons who suffer from intractable seizures are safer if attended when seizures strike. Consequently, there is a need for wearable devices capable of detecting both convulsive and nonconvulsive seizures in everyday life. We have developed a three-stage seizure detection methodology based on 339 h of data (26 seizures) collected from 10 patients in an epilepsy monitoring unit. Our intent is to develop a wearable system that will detect seizures, alert a caregiver and record the time of seizure in an electronic diary for the patient’s physician. Stage I looks for concurrent activity in heart rate, arterial oxygenation and electrodermal activity, all of which can be monitored by a wrist-worn device and which in combination produce a very low false positive rate. Stage II looks for a specific pattern created by these three biosignals. For the patients whose seizures cannot be detected by Stage II, Stage III detects seizures using limited-channel electroencephalogram (EEG) monitoring with at most three electrodes. Out of 10 patients, Stage I recognized all 11 seizures from seven patients, Stage II detected all 10 seizures from six patients and Stage III detected all of the seizures of two out of the three patients it analyzed.
Automated seizure detection in a home environment has been of increased interest the last couple of decades. The electrocardiogram is one of the signals that is suited for this application. In this paper, a new method is described that classifies different heart rate characteristics in order to detect seizures from temporal lobe epilepsy patients. The used support vector machine classifier is trained on data from other patients, so that the algorithm can be used directly from the start of each new recording. The algorithm was tested on a dataset of more than 918h of data coming from 17 patients containing 127 complex partial and generalized partial seizures. The algorithm was able to detect 81.89% of the seizures, with on average 1.97 false alarms per hour. These results show a strong drop in the number of false alarms of more than 50% compared to other heart rate-based patient-independent algorithms from the literature, at the expense of a slightly higher detection delay of 17.8s on average.
Automatic seizure detection is extremely important in the monitoring and diagnosis of epilepsy. The paper presents a novel method based on dictionary pair learning (DPL) for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. First, for the EEG data, wavelet filtering and differential filtering are applied, and the kernel function is performed to make the signal linearly separable. In DPL, the synthesis dictionary and analysis dictionary are learned jointly from original training samples with alternating minimization method, and sparse coefficients are obtained by using of linear projection instead of costly l0-norm or l1-norm optimization. At last, the reconstructed residuals associated with seizure and nonseizure sub-dictionary pairs are calculated as the decision values, and the postprocessing is performed for improving the recognition rate and reducing the false detection rate of the system. A total of 530h from 20 patients with 81 seizures were used to evaluate the system. Our proposed method has achieved an average segment-based sensitivity of 93.39%, specificity of 98.51%, and event-based sensitivity of 96.36% with false detection rate of 0.236/h.
Imbalance data classification is a challenging task in automatic seizure detection from electroencephalogram (EEG) recordings when the durations of non-seizure periods are much longer than those of seizure activities. An imbalanced learning model is proposed in this paper to improve the identification of seizure events in long-term EEG signals. To better represent the underlying microstructure distributions of EEG signals while preserving the non-stationary nature, discrete wavelet transform (DWT) and uniform 1D-LBP feature extraction procedure are introduced. A learning framework is then designed by the ensemble of weakly trained support vector machines (SVMs). Under-sampling is employed to split the imbalanced seizure and non-seizure samples into multiple balanced subsets where each of them is utilized to train an individual SVM classifier. The weak SVMs are incorporated to build a strong classifier which emphasizes seizure samples and in the meantime analyzing the imbalanced class distribution of EEG data. Final seizure detection results are obtained in a multi-level decision fusion process by considering temporal and frequency factors. The model was validated over two long-term and one short-term public EEG databases. The model achieved a G-mean of 97.14% with respect to epoch-level assessment, an event-level sensitivity of 96.67%, and a false detection rate of 0.86/h on the long-term intracranial database. An epoch-level G-mean of 95.28% and event-level false detection rate of 0.81/h were yielded over the long-term scalp database. The comparisons with 14 published methods demonstrated the improved detection performance for imbalanced EEG signals and the generalizability of the proposed model.
Automatic seizure detection is significant for the diagnosis of epilepsy and reducing the massive workload of reviewing continuous EEGs. In this work, a novel approach, combining Stockwell transform (S-transform) with deep Convolutional Neural Networks (CNN), is proposed to detect seizure onsets in long-term intracranial EEG recordings. Primarily, raw EEG data is filtered with wavelet decomposition. Then, S-transform is used to obtain a proper time-frequency representation of each EEG segment. After that, a 15-layer deep CNN using dropout and batch normalization serves as a robust feature extractor and classifier. Finally, smoothing and collar technique are applied to the outputs of CNN to improve the detection accuracy and reduce the false detection rate (FDR). The segment-based and event-based evaluation assessments and receiver operating characteristic (ROC) curves are employed for the performance evaluation on a public EEG database containing 21 patients. A segment-based sensitivity of 97.01% and a specificity of 98.12% are yielded. For the event-based assessment, this method achieves a sensitivity of 95.45% with an FDR of 0.36/h.
The automatic seizure detection system can effectively help doctors to monitor and diagnose epilepsy thus reducing their workload. Many outstanding studies have given good results in the two-class seizure detection problems, but most of them are based on hand-wrought feature extraction. This study proposes an end-to-end automatic seizure detection system based on deep learning, which does not require heavy preprocessing on the EEG data or feature engineering. The fully convolutional network with three convolution blocks is first used to learn the expressive seizure characteristics from EEG data. Then these robust EEG features pertinent to seizures are presented as an input to the Nested Long Short-Term Memory (NLSTM) model to explore the inherent temporal dependencies in EEG signals. Lastly, the high-level features obtained from the NLSTM model are fed into the softmax layer to output predicted labels. The proposed method yields an accuracy range of 98.44–100% in 10 different experiments based on the Bonn University database. A larger EEG database is then used to evaluate the performance of the proposed method in real-life situations. The average sensitivity of 97.47%, specificity of 96.17%, and false detection rate of 0.487 per hour are yielded. For CHB–MIT Scalp EEG database, the proposed model also achieves a segment-level sensitivity of 94.07% with a false detection rate of 0.66 per hour. The excellent results obtained on three different EEG databases demonstrate that the proposed method has good robustness and generalization power under ideal and real-life conditions.
Electroencephalogram (EEG) plays an important role in recording brain activity to diagnose epilepsy. However, it is not only laborious, but also not very cost effective for medical experts to manually identify the features on EEG. Therefore, automatic seizure detection in accordance with the EEG recordings is significant for the diagnosis and treatment of epilepsy. Here, a new method for detecting seizures using tensor distance (TD) is proposed. First, the time–frequency characteristics of EEG signals are obtained by wavelet transformation, and the tensor representation of EEG signals is then obtained. Tucker decomposition is used to obtain the principal components of the EEG tensor. After, the distances between different categories of EEG tensors are calculated as the EEG features. Finally, the TD features are classified through the Bayesian Linear Discriminant Analysis (Bayesian LDA) classifier. The performance of this method is measured by the sensitivity, specificity, and recognition accuracy. Results indicate 95.12% sensitivity, 97.60% specificity, 97.60% recognition accuracy, and a false detection rate of 0.76 per hour in the invasive EEG dataset, which included 566.57h of EEG recording data from 21 patients. Taken together, the results show that TD has a good detection effect for seizure classification and that this method has high computational speed and great potential for real-time diagnosis.
EEG is the gold standard for seizure detection in the newborn infant, but EEG interpretation in the preterm group is particularly challenging; trained experts are scarce and the task of interpreting EEG in real-time is arduous. Preterm infants are reported to have a higher incidence of seizures compared to term infants. Preterm EEG morphology differs from that of term infants, which implies that seizure detection algorithms trained on term EEG may not be appropriate. The task of developing preterm specific algorithms becomes extra-challenging given the limited amount of annotated preterm EEG data available.
This paper explores novel deep learning (DL) architectures for the task of neonatal seizure detection in preterm infants. The study tests and compares several approaches to address the problem: training on data from full-term infants; training on data from preterm infants; training on age-specific preterm data and transfer learning. The system performance is assessed on a large database of continuous EEG recordings of 575h in duration.
It is shown that the accuracy of a validated term-trained EEG seizure detection algorithm, based on a support vector machine classifier, when tested on preterm infants falls well short of the performance achieved for full-term infants. An AUC of 88.3% was obtained when tested on preterm EEG as compared to 96.6% obtained when tested on term EEG. When re-trained on preterm EEG, the performance marginally increases to 89.7%. An alternative DL approach shows a more stable trend when tested on the preterm cohort, starting with an AUC of 93.3% for the term-trained algorithm and reaching 95.0% by transfer learning from the term model using available preterm data. The proposed DL approach avoids time-consuming explicit feature engineering and leverages the existence of the term seizure detection model, resulting in accurate predictions with a minimum amount of annotated preterm data.
On-demand stimulation improves the efficacy of vagus nerve stimulation (VNS) in refractory epilepsy. The vagus nerve is the main peripheral parasympathetic connection and seizures are known to exhibit autonomic symptoms. Therefore, we hypothesized that seizure detection is possible through vagus nerve electroneurogram (VENG) recording. We developed a metric able to measure abrupt changes in amplitude and frequency of spontaneous vagus nerve action potentials. A classifier was trained using a “leave-one-out” method on a set of 6 seizures and 3 control recordings to utilize the VENG spike feature-based metric for seizure detection. We were able to detect pentylenetetrazol (PTZ) induced acute seizures in 6/6 animals during different stages of the seizure with no false detection. The classifier detected the seizure during an early stage in 3/6 animals and at the onset of tonic clonic stage of the seizure in 3/6 animals. EMG and motion artefacts often accompany epileptic activity. We showed the “epileptic” neural signal to be independent from EMG and motion artefacts. We confirmed the existence of seizure related signals in the VENG recording and proved their applicability for seizure detection. This detection might be a promising tool to improve efficacy of VNS treatment by developing new responsive stimulation systems.
Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.
Automatic seizure detection from electroencephalogram (EEG) plays a vital role in accelerating epilepsy diagnosis. Previous researches on seizure detection mainly focused on extracting time-domain and frequency-domain features from single electrodes, while paying little attention to the positional correlations between different EEG channels of the same subject. Moreover, data imbalance is common in seizure detection scenarios where the duration of nonseizure periods is much longer than the duration of seizures. To cope with the two challenges, a novel seizure detection method based on graph attention network (GAT) is presented. The approach acts on graph-structured data and takes the raw EEG data as input. The positional relationship between different EEG signals is exploited by GAT. The loss function of the GAT model is redefined using the focal loss to tackle data imbalance problem. Experiments are conducted on the CHB-MIT dataset. The accuracy, sensitivity and specificity of the proposed method are 98.89%, 97.10% and 99.63%, respectively.
Automatic seizure detection is of great significance for epilepsy diagnosis and alleviating the massive burden caused by manual inspection of long-term EEG. At present, most seizure detection methods are highly patient-dependent and have poor generalization performance. In this study, a novel patient-independent approach is proposed to effectively detect seizure onsets. First, the multi-channel EEG recordings are preprocessed by wavelet decomposition. Then, the Convolutional Neural Network (CNN) with proper depth works as an EEG feature extractor. Next, the obtained features are fed into a Bidirectional Long Short-Term Memory (BiLSTM) network to further capture the temporal variation characteristics. Finally, aiming to reduce the false detection rate (FDR) and improve the sensitivity, the postprocessing, including smoothing and collar, is performed on the outputs of the model. During the training stage, a novel channel perturbation technique is introduced to enhance the model generalization ability. The proposed approach is comprehensively evaluated on the CHB-MIT public scalp EEG database as well as a more challenging SH-SDU scalp EEG database we collected. Segment-based average accuracies of 97.51% and 93.70%, event-based average sensitivities of 86.51% and 89.89%, and average AUC-ROC of 90.82% and 90.75% are yielded on the CHB-MIT database and SH-SDU database, respectively.
Automatic epilepsy detection is of great significance for the diagnosis and treatment of patients. Most detection methods are based on patient-specific models and have achieved good results. However, in practice, new patients do not have their own previous EEG data and therefore cannot be initially diagnosed. If the EEG data of other patients can be used to achieve cross-patient detection, and cross-patient and patient-specific experiments can be combined at the same time, this method will be more widely used. In this work, an EEG classification model based on a self-organizing fuzzy logic (SOF) classifier is proposed for both cross-patient and patient-specific seizure detection. After preprocessing, the features of the original EEG signal are extracted and sent to the SOF classifier. This classification model is free from predefined parameters or a prior assumption regarding the EEG data generation model and only stores the key meta-parameters in memory. Therefore, it is very suitable for large-scale EEG signals in cross-patient detection. Selecting different granularity and classification distance in two different experiments after post-processing will achieve the best results. Experiments were conducted using a long-term continuous scalp EEG database and the G-mean of cross-patient and patient-specific detection reached 83.35% and 92.04%, respectively. A comparison with other methods shows that there is greater performance and generalizability with this method.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.