Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    INTIMAL HYPERPLASIA AND WALL SHEAR IN ARTERIAL BYPASS Y-GRAFTING AND CONSEQUENCE GRAFTING: A NUMERICAL STUDY

    The progression of intimal hyperplasia is considered to be the main cause of bypass failure and is directly related to the individual blood rheology, local arterial geometry and placement of the junctions, graft diameter and graft surface characteristics as well as the degree of compliance. In this paper we use commercial computational fluid dynamics (CFD) ANSYS to examine under the correct physiological flow conditions the hemodynamic forces of composite bypass with internal mammary artery in Y-grafting and consequence grafting which is known to achieve high patency rate and highly recommended by clinicians. Particular emphasis is given here on the parameters that could initiate the development of intimal hyperplasia within these bypass configurations. The hemodynamic flow patterns between the consequence grafting and the composite Y-grafting are observed here to be different. Moreover, on both end-to-side and side-to-side configurations, the circulating flows are detected in the vicinity of the junction area, while the Dean flow vortexes are only observed on the end-to-side configuration. Likewise, the hemodynamic flow on the end-to-side configuration on the LCX of both 45° and 90° Y-grafting is found to be smoother than that of the junction on the LCA, regardless of the changing of anastomosis angles. The high WSS gradients are observed at the vicinity of the toe and on the bed of the junction, while the low WSS are presented at the distal of the stenosis and at the stagnation point. The clinical relevance of the results are presented and discussed with particular focus on the factors and the flow patterns that trigger the development of intimal hyperplasia.