Dense aluminum-lithium alloy reinforced with up to 20 vol.% SiCp was prepared from powder mixture using spark plasma sintering process (SPS process). The process, originally developed by Sumitomo Coal Mining Co., has been found to be highly effective for the sintering of ceramic, metallic, and composite materials. Aluminum A 8090 was mixed with silicon carbide particles (SiCp) by mechanical milling before sintered at 723 K under a pressure of 125 MPa for up to 10 minutes. Relative density of the sintered composite reinforced with 10 vol.% SiCp was found to exceed 99% of the theoretical value. The Young modulus, yield stress, and ultimate tensile stress of the composite were 91 GPa, 256 MPa, and 332 MPa, respectively, which are, approximately, of the same values as those conventionally hot-isostatic press processed. The elongation of the composite was also found to be higher than that of the conventional one. The microstructure of the sintered composite was observed using both optical and scanning electron microscope. In the region away from the contact surface with the mould wall, the matrix powder was compressed along the vertical direction and elongated in the horizontal direction normal to the applied pressure. At the surface where the specimen was in contact with the mould and punch, the friction force controlled the deformation and thus the shape of the sintered powder. In this paper, the influences of reinforcement volume fractions, sintering temperatures, holding time, and applied pressure are also discussed.