Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    E' CENTERS IN SILICON DIOXIDE: FIRST-PRINCIPLES MOLECULAR DYNAMICS STUDIES

    The point-like defects known as E' centers are the most abundant natural defects in silicon dioxide (SiO2) and have been identified as unpaired sp3 dangling bonds. Their importance stems from the fact that they deeply affect the quality of electronic and optical devices. For this reason, particular attention has been paid in their characterization since the early 1960s. In this work, we review theoretical and experimental results concerning these kinds of defects, focusing on the related charge and spin states. In particular, the defect known as E' in crystalline quartz and its analogous E'γ in amorphous SiO2, detected by electron spin resonance, are shown to be due to the Si dangling bonds that arise either upon removal or displacement of an oxygen atom in a SiO2 network, accompanied by an asymmetric relaxation of the network.

  • articleNo Access

    PREPARATION OF Cu-SiO2/PA12 COMPOSITE POWDERS BY ELECTROLESS PLATING FOR USE IN SLS PROCESSING

    In this work, SiO2-encapsulated copper particles/PA12 (Cu-SiO2/PA12) composite powders were prepared by electroless composite plating, and the laser sintering behavior was investigated. Results showed that Cu, Cu2O, CuO, and SiO2 (Cu-SiO2) composite particles were plated on the surface of KH550-modified PA12 powders. The Cu-SiO2 particles existed independently on PA12 surface, and the size was around 200 nm. The melting temperature and crystallization temperature of Cu-SiO2/PA12 composite powders were 183C and 150C. The results indicate that the selective laser sintering (SLS) process involved the contact of Cu-SiO2/PA12 powders, the formation of sintering neck, the growth of sintering neck, and the formation of fused solid. The Cu-SiO2 composite particles uniformly dispersed in the part due to surface tension, and the contact interface was good due to their similar polarity. The Cu-SiO2/PA12 SLS parts had excellent dimensional precision. The tensile strength of the 15W-sintered Cu-SiO2/PA12 specimen was 48MPa.

  • articleNo Access

    STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES

    Composite polyurethane (PU)-SiO2 hollow fiber membranes were successfully prepared via optimizing the technique of dry-jet wet spinning, and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure (PWF-TP) for the first time. The origin for this phenomenon was analyzed on the basis of membrane structure and material characteristics. The effects of SiO2 content on the structure and properties of membrane were investigated. The experimental results indicated that SiO2 in membrane created a great many interfacial micro-voids and played an important role in pressure-responsibility, PWF and rejection of membrane: with the increase of SiO2 content, the ability of membrane recovery weakened, PWF increased, and rejection decreased slightly.

  • articleNo Access

    The Role of Silicon-Based Nanofillers and Polymer Crystallization on the Breakdown Behaviors of Polyethylene Blend Nanocomposites

    Nano01 Aug 2020

    Good breakdown strength is an important feature for the selection of dielectric materials, especially in high-voltage engineering. Although nanocomposites have been shown to possess many promising dielectric properties, the breakdown strength of nanocomposites is often found to be negatively affected. Recently, imposing nonisothermal crystallization processes on polyethylene blends has been demonstrated to be favorable for breakdown strength improvements of dielectric materials. In an attempt to increase nanocomposites’ voltage rating, this work reports on the effects of nonisothermal crystallization (fast, moderate and slow crystallizations) on the structure and dielectric properties of a polyethylene blend (PE) composed of 80% low density polyethylene and 20% high density polyethylene, added with silicon dioxide (SiO2) and silicon nitride (Si3N4) nanofillers. Through breakdown testing, the breakdown performance of Si3N4-based nanocomposites was better than SiO2-based nanocomposites. Since nanofiller dispersion within both nanocomposite systems was comparable, the enhanced breakdown performance of Si3N4-based nanocomposites is attributed to the surface chemistry of Si3N4 containing less hydroxyl groups than SiO2. Furthermore, the breakdown strength of SiO2-based nanocomposites and Si3N4-based nanocomposites improved, with the DC breakdown strength increasing by at least 12% when both the nanocomposites were subjected to moderate crystallization rather than fast and slow crystallizations. This is attributed to changes in the underlying molecular conformation of PE in addition to water-related effects. These results suggest that apart from changes in the nanofiller surface chemistry, changes in the underlying molecular conformation of polymers are also important to improve the breakdown performance of nanocomposites.