Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The friction and wear of silicon nitride (Si3N4) against silicon nitride (Si3N4) and zirconia (Y–TZP) and chilled cast iron and Alumina sliding under dry friction at room temperature conditions were investigated with pin-on-disk tribometer at sliding speed of 0.56ms-1 and normal load of 50N, 80N, respectively. Based on the variety regulation of the wear maps, the wear mechanisms of the two couples were analyzed. Get the result of friction coefficient and maps of wear Rate of the Pin and the Disk. The results of comparing this couple is Si3N4/ chilled cast iron < Si3N4/ ZrO2< Si3N4/ Si3N4< Si3N4/ Al2O3.
Good breakdown strength is an important feature for the selection of dielectric materials, especially in high-voltage engineering. Although nanocomposites have been shown to possess many promising dielectric properties, the breakdown strength of nanocomposites is often found to be negatively affected. Recently, imposing nonisothermal crystallization processes on polyethylene blends has been demonstrated to be favorable for breakdown strength improvements of dielectric materials. In an attempt to increase nanocomposites’ voltage rating, this work reports on the effects of nonisothermal crystallization (fast, moderate and slow crystallizations) on the structure and dielectric properties of a polyethylene blend (PE) composed of 80% low density polyethylene and 20% high density polyethylene, added with silicon dioxide (SiO2) and silicon nitride (Si3N4) nanofillers. Through breakdown testing, the breakdown performance of Si3N4-based nanocomposites was better than SiO2-based nanocomposites. Since nanofiller dispersion within both nanocomposite systems was comparable, the enhanced breakdown performance of Si3N4-based nanocomposites is attributed to the surface chemistry of Si3N4 containing less hydroxyl groups than SiO2. Furthermore, the breakdown strength of SiO2-based nanocomposites and Si3N4-based nanocomposites improved, with the DC breakdown strength increasing by at least 12% when both the nanocomposites were subjected to moderate crystallization rather than fast and slow crystallizations. This is attributed to changes in the underlying molecular conformation of PE in addition to water-related effects. These results suggest that apart from changes in the nanofiller surface chemistry, changes in the underlying molecular conformation of polymers are also important to improve the breakdown performance of nanocomposites.
Si3N4–SiC composites were fabricated by spark plasma sintering at 1700∘C for 480 S with MgSiN2 and Y2O3 as additives. The morphology and phase characterization of the composites were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The values of n parameter indicate that the grain boundary reaction is the rate controller at 1500∘C and diffusion becomes the controlling step at 1550∘C. The nanohardness and Young’s modulus attained the maximum value of 18.5 and 316GPa, respectively.