Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THE FRICTION AND WEAR CHARACTERISTICS OF SI3N4 CERAMIC AGAINST SI3N4 CERAMIC ZRO2 CERAMIC AND CHILLED CAST IRON AND AL2O3 CERAMIC UNDER DRY FRICTION

    The friction and wear of silicon nitride (Si3N4) against silicon nitride (Si3N4) and zirconia (Y–TZP) and chilled cast iron and Alumina sliding under dry friction at room temperature conditions were investigated with pin-on-disk tribometer at sliding speed of 0.56ms-1 and normal load of 50N, 80N, respectively. Based on the variety regulation of the wear maps, the wear mechanisms of the two couples were analyzed. Get the result of friction coefficient and maps of wear Rate of the Pin and the Disk. The results of comparing this couple is Si3N4/ chilled cast iron < Si3N4/ ZrO2< Si3N4/ Si3N4< Si3N4/ Al2O3.

  • articleNo Access

    The Role of Silicon-Based Nanofillers and Polymer Crystallization on the Breakdown Behaviors of Polyethylene Blend Nanocomposites

    Nano01 Aug 2020

    Good breakdown strength is an important feature for the selection of dielectric materials, especially in high-voltage engineering. Although nanocomposites have been shown to possess many promising dielectric properties, the breakdown strength of nanocomposites is often found to be negatively affected. Recently, imposing nonisothermal crystallization processes on polyethylene blends has been demonstrated to be favorable for breakdown strength improvements of dielectric materials. In an attempt to increase nanocomposites’ voltage rating, this work reports on the effects of nonisothermal crystallization (fast, moderate and slow crystallizations) on the structure and dielectric properties of a polyethylene blend (PE) composed of 80% low density polyethylene and 20% high density polyethylene, added with silicon dioxide (SiO2) and silicon nitride (Si3N4) nanofillers. Through breakdown testing, the breakdown performance of Si3N4-based nanocomposites was better than SiO2-based nanocomposites. Since nanofiller dispersion within both nanocomposite systems was comparable, the enhanced breakdown performance of Si3N4-based nanocomposites is attributed to the surface chemistry of Si3N4 containing less hydroxyl groups than SiO2. Furthermore, the breakdown strength of SiO2-based nanocomposites and Si3N4-based nanocomposites improved, with the DC breakdown strength increasing by at least 12% when both the nanocomposites were subjected to moderate crystallization rather than fast and slow crystallizations. This is attributed to changes in the underlying molecular conformation of PE in addition to water-related effects. These results suggest that apart from changes in the nanofiller surface chemistry, changes in the underlying molecular conformation of polymers are also important to improve the breakdown performance of nanocomposites.

  • articleNo Access

    Sintering and kinetic mechanism of Si3N4-SiC micro-nano composite by spark plasma sintering

    Si3N4–SiC composites were fabricated by spark plasma sintering at 1700C for 480 S with MgSiN2 and Y2O3 as additives. The morphology and phase characterization of the composites were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The values of n parameter indicate that the grain boundary reaction is the rate controller at 1500C and diffusion becomes the controlling step at 1550C. The nanohardness and Young’s modulus attained the maximum value of 18.5 and 316GPa, respectively.