Please login to be able to save your searches and receive alerts for new content matching your search criteria.
A microbeam analysis system at Tohoku University has been improved in detection efficiency for application to single cell analysis. The system is applicable to STIM analysis and to simultaneous PIXE and RBS analysis. Sample preparation methods suitable for non-adhesive single cell analysis were developed and first results with the improved analysis system are shown.
Electrical impedance spectroscopy (EIS) is a noninvasive method for characterizing the dielectric properties of biological particles. The technique can differentiate between cell types and provide information on cell properties through measurement of the permittivity and conductivity of the cell membrane and cytoplasm. In terms of lab-on-a-chip (LOC) technology, cells pass sequentially through the microfluidic channel at high speed and are analyzed individually, rather than as traditionally done on a mixture of particles in suspension. This paper describes the analytical and numerical modeling methods for EIS of single cell analysis in a microfluidic cytometer. The presented modeling methods include Maxwell's mixture theory, equivalent circuit model and finite element method. The difference and advantages of these methods have been discussed. The modeling work has covered the static case — an immobilized cell in suspension and the dynamic case — a moving cell in the channel.