Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Independent component analysis (ICA) does not follow the superposition rule. This motivates us to study a negative event-related potential — mismatch negativity (MMN) estimated by the single-trial based ICA (sICA) and averaged trace based ICA (aICA), respectively. To sICA, an optimal digital filter (ODF) was used to remove low-frequency noise. As a result, this study demonstrates that the performance of the sICA+ODF and aICA could be different. Moreover, MMN under sICA+ODF fits better with the theoretical expectation, i.e., larger deviant elicits larger MMN peak amplitude.
We present a systematic and straightforward approach to the problem of single-trial classification of event-related potentials (ERP) in EEG. Instead of using a generic classifier off-the-shelf, like a neural network or support vector machine, our classifier design is guided by prior knowledge about the problem and statistical properties found in the data. In particular, we exploit the well-known fact that event-related drifts in EEG potentials, albeit hard to detect in a single trial, can well be observed if averaged over a sufficiently large number of trials. We propose to use the average signal and its variance as a generative model for each event class and use Bayes' decision rule for the classification of new and unlabeled data. The method is successfully applied to a data set from the NIPS*2001 Brain–Computer Interface post-workshop competition. Our result turned out to be competitive with the best result of the competition.