Let AA be a compact operator in a separable Hilbert space and λk(A)(k=1,2,…)λk(A)(k=1,2,…) be the eigenvalues of AA with their multiplicities enumerated in the non-increasing order of their absolute values. We prove the inequality
(m∑k=1|λk(A)|2)2≤2∑1≤k<j≤ms2k(A)s2j(A)+m∑k=1s2k(A2)(m=2,3,…),(m∑k=1∣∣λk(A)∣∣2)2≤2∑1≤k<j≤ms2k(A)s2j(A)+m∑k=1s2k(A2)(m=2,3,…),
where sk(A)sk(A) and sk(A2)sk(A2) are the singular values of AA and of A2A2, respectively, enumerated with their multiplicities in the non-increasing order. This result refines the classical inequality m∑k=1|λk(A)|2≤m∑k=1s2k(A)(m=1,2,3,…).m∑k=1∣∣λk(A)∣∣2≤m∑k=1s2k(A)(m=1,2,3,…).