Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this article, H/V ratio are evaluated using different spectral techiniques applied to both earthquake and microtremor data (Nakamura technique). In particular, in order to avoid numerical instability, two different numerical techiniques are taken into account: (a) a smoothing procedure applied to the spectra of the seismogram components and (b) a regularization method applied to the H/V ratio (Landweber scheme). The data set consists of more than 70 earthquake events recorded by three component sensors displaced in the town of Fabriano (Central Italy) during the Umbria-Marche sequence started on September 1997. The local magnitudes range between 2.7 and 4.4, while the epicentral distances range between nearly 30 and 60 km. The stations were set to continuous recording so that a huge amount of microtremors was stored. The results are compared in terms of predominant frequencies and amplification levels in order to point out the influence of the adopted methods. The H/V ratio provides similar results if applied to a smoothed version of both earthquake and microtremor spectra, confirming that Nakamura technique is a cheap and a fast method to collect information on the site amplification effects. Moreover, the results relevant to earthquake data seem not to depend on the method used to stabilize the H/V ratio, whereas those relevant to microtremor data does. The explanation of this fact is suggested by the behaviour of the Landweber filter showing that the predominant frequency detected by means of microtremor data lies in a high instability region of the spectra.
Understanding the dynamic behaviour of soil in the Anchorage basin in southcentral Alaska is essential for seismic hazard assessment of this highly seismically active region. The analysis of site responses for 40 sites from weak-motion and strong-motion data with amplitudes less than 0.1 g showed a strong influence of subsurface geological conditions on the characteristics of ground motion. Particularly, the sites in the central part of the city, including the downtown area, showed prominent resonance peaks around 1 Hz with amplification values up to about 4. The numerical analysis, based on one-dimensional multi-layer soil models shows that site response characteristics, and especially aforementioned peaks, are largely related to the thick, soft layer of Quaternary deposits, particularly cohesive facies of Bootlegger Cove Formation. The computed transfer functions for soil profiles of six representative sites are in accord with the site responses in the frequency range from 1 to 5 Hz. There is no significant change in amplification values below 2 Hz corresponding to large-amplitude (up to 0.38 g) ground motions; however, above 2–3 Hz the amplification values are greatly reduced in this case.
Acceleration data from local and regional earthquakes is of prime importance in evaluating the seismic hazard. Consequently, strong motion accelerometers are currently installed at more than 60 locations in Israel. We have explored the possibility of site amplification effects at 10 sites where local earthquakes triggered strong motion accelerometers by integrating empirical and analytical estimations. Implementing H/V spectral ratio techniques using 15 accelerograms from nine earthquakes, 105 seismograms shear-wave records of 35 local and regional earthquakes and seismograms of microtremors were used in the empirical evaluations. The subsurface models were constructed by integrating available geological and geophysical information at the analysed site with empirically evaluated site response functions. Amplification effects of factor 3–6 are observed at various frequencies in the 0.8–6.0 Hz band. Through the analysis process it became evident that the instant availability of many useful time windows of microtremors provides systematic estimations of the fundamental resonance frequency of each site and their associated amplification levels, which are similar to those obtained from H/V spectral ratios of seismograms and accelerograms and to those inferred from the subsurface geology. Analytical transfer functions should be reviewed with respect to empirical site response evaluations. Estimations that are based on only one approach may be totally misleading.
On October 31 and November 1, 2002, two earthquakes of magnitude 5.4 and 5.3 hit the area at the border between the Molise and Puglia regions in Southern Italy. The damage pattern in the epicentral area qualified the quake as an intensity VII MCS event, although providing a notable exception relevant to the small village of San Giuliano di Puglia. Since the first macroseismic survey, it appeared clear that in S. Giuliano the intensity was two degrees higher with respect to three neighbouring villages located within a radius of 3 km. Soon after the quake, our team started a campaign of microtremor HVSR measurements (Horizontal to Vertical Spectral Ratio), then we installed accelerometers and carried out damage and geological surveys. Finally, we performed a geoelectrical tomography and two profiles of Vs velocity with depth using the NASW technique (Noise Analysis of Surface Waves). The preliminary observations indicate that ground motion amplification is present in S. Giuliano within the frequency band that may affect building. A strong velocity contrast 20 m deep causes the predominant peak. More amplification could be due to more complicated, 2D effects. As regards the damage pattern, it divides S. Giuliano in three zones showing different characteristics and seismic behaviour. A building-by-building survey is still under way to better evaluate vulnerability variations in different zones of the village. However, the acquired data so far is sufficient to propose site amplification as a possible cause of the damage enhancement observed in S. Giuliano.
An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). Accordingly to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment.
A time-domain parametric study for the seismic response of a region located on the eastern bank of the Kifisos river canyon is performed to evaluate the significance of topography and soil effects on the seismic response of slopes. This region experienced unexpectedly heavy damage during the 7 September 1999 Ms 5.9 earthquake. Two-dimensional finite-element and spectral-element analyses are conducted using Ricker wavelets of various central frequencies as horizontal and vertical base excitation. The significance of a layered soil profile and the frequency content of the input motion, the emergence of "parasitic" acceleration components, and the effect of the angle of incidence on the amplification of the incoming waves are all discussed in detail. It is shown that the presence of a surface soil layer significantly affects the amplification pattern. The so-called Topographic Aggravation Factor (defined as the 2D/1D Fourier spectral ratio) achieves its maximum value very near the crest, in function of the frequency content of the excitation. For the particular soil conditions and geometry analysed, vertically propagating SV waves incite at about the critical angle, resulting in the highest topographic amplification.
The importance of local site amplification during historical earthquakes in Eastern Venezuela is documented by setting the information in its geological and historical context. Reports are often only available for a few urban spots settling on soft soils. Prior to the second half of the 20th century, historical information is only available for the Northern Caribbean coast. During the following years, the increase in the number of villages inside the Orinoco basin results in a better description of historical earthquakes. An assessment of intensity values using the descriptions of the damages suffered by religious and military buildings is often unavoidable, because information on the damages suffered by individual houses is often lacking. This constraint requires us to understand the architectural characteristics of the buildings and the history of their repairs. Due to their peculiar geometry, material heterogeneity, and long lasting repairs, the vulnerability of the buildings could indeed be higher than the vulnerability of individual houses. The settlement of forts on top of the steep hills surrounded by soft water-rich soils still enhanced their vulnerability, due to the low-frequency amplification of the ground motion.
Different aspects of spectral analysis for site response evaluation are investigated in this study. The segmental cross-spectrum is proposed in spectral analysis of earthquake ground motions. The performance of segmental cross-spectrum in contrast with the conventional methods is investigated through the mathematical modelling, numerical analysis and application to earthquake data recorded at Chiba and Shinfuji downhole arrays in Japan. In analysis of earthquake data, the soil amplification function is identified using both uphole/downhole (U/D) and H/V spectral ratios. The advantage of segmental cross-spectrum is assessed by comparing identified amplification functions using different spectral methods and theoretical soil response. The reliability of site response estimations obtained by H/V spectral ratio using segmental cross- and Fourier spectra is also examined by means of cross-validation with the U/D spectral ratio of earthquake motion and theoretical soil response. Furthermore, the application of segmental cross-spectrum in nonlinear soil response is examined by comparing the amplification function of weak and strong motions for both methods. The results validate the advantage of segmental cross-spectrum in both linear and nonlinear soil response, particularly, when it used with H/V technique.
A non-parametric multidimensional regression method is proposed for the prediction of seismic ground motion parameters. The main features which distinguish the method from standard regression procedures are: (1) The relationship between the input and output variables is not selected a priori by a prediction law, (2) an arbitrary number of input variables can be taken into account, provided that an appropriate data base exists, and (3) the computational procedure is very simple. The results can be easily updated when new information becomes available. The method has been applied for the derivation of attenuation relations by using a combination of databases compiled by other researchers. In the majority of the cases discussed in this paper, the method was used for the prediction of horizontal peak ground acceleration as a function of magnitude and distance. In some cases, ground conditions were also taken into account. Some results on the attenuation relations of peak ground velocity and displacement, as well as Arias intensity, are also presented.
Both lithologic and topographic irregularities may trigger significant scattering phenomenon of seismic waves. In this study, a series solution is presented for the analysis of scattering of SH waves induced by a trapezoidal valley during earthquakes. An appropriate region matching technique is utilized to divide the physical region into four computational subregions. The wave motions of each subregion are obtained as an infinite series of wave functions with unknown coefficients in the respective cylindrical coordinates through wave function expansion method. The Graf's addition theorem is applied to transform the wave potentials of each subregion into the global coordinate. The mixed boundary conditions are solved by truncating the obtained infinite equations into a finite set. The effects of geometrical topographies and sedimentary properties on the amplification are analyzed and discussed in terms of steady-state and transient response analysis.
To elucidate the ground motion amplification due to soil and topographic effects, an analytical formulation based on wavefunction expansion is derived for the scattering of plane SH waves by a semi-cylindrical valley partially filled with a crescent-shaped soil layer. The site responses consisting of both soil and topographic effects from the partially filled alluvial valley and the pure topographic contribution from the homogeneous valley of the same geometry are calculated and compared. It is found that the soil amplification effects are usually larger than the topographic amplification effects within the alluvial valley, while the topographic effects dominate the amplification pattern of ground motions outside the alluvial valley. Generally, the maximum soil amplification generally far outweighs the maximum topographic amplification. The material parameters and filling degree of the soil layer are found to affect the magnitude and the pattern of ground motion amplitude on the valley surface depending on the irregular topography, the frequency content and obliquity of the wave incidence.
The first resonance peak, Gs1, represents the amplification ratio of seismic motion when resonance between input motion and the local site occurs. The Gs1 is important for understanding amplification characteristics of local site, thus it has been adopted for evaluating site effects in the Japanese Seismic Code. Herein, a simple method for estimating the Gs1 of layered soil profiles is proposed. By replacing a multi-layer soil profile on bedrock with an equivalent one-layer soil profile, the Gs1 and fundamental period are easily obtained. To realize the one-layer profile, we develop a procedure to replace a two-layer soil profile on bedrock with an equivalent single-layer profile. This procedure is then applied successively to a multi-layer soil profile to obtain an equivalent single-layer soil profile. The validity of the proposed method is demonstrated by evaluating 67 representative sites. The results obtained using the proposed procedure agree well with those produced by the wave propagation method.
In both seismic design and probabilistic seismic-hazard analyses, site effects are typically characterized as the ratio of the response spectral ordinate on the ground surface to that on the bedrock based on the scaling law borrowed from the Fourier spectral ordinate. Recent studies have shown that different from the Fourier spectral ratio (FSR), the response spectral ratio (RSR) does not purely reflect the site effects but also depends on the earthquake scenario even for linear analysis. However, previous studies are limited to theoretical analysis. This study statistically compares the two spectral ratios by analyzing many actual seismic ground motions recorded at nearby soil and rock sites. It is observed that the average RSR and FSR have similar overall shapes, and their maximum values occur at approximately the same period; however, the values around the peak are clearly different with FSRs consistently exceeding the RSRs. The RSR–FSR relationship depends on the earthquake scenario and the oscillator damping; their difference at periods longer than the site’s fundamental period decreases as the magnitude and epicentral distance increase, and the RSRs generally approach the FSRs as the oscillator damping decreases.
The soil–structure interaction plays a crucial role in determining the displacement and internal forces of multi-story buildings subjected to strong ground motion. One of the critical dynamic characteristics influencing soil–structure interaction is the fundamental site period and the average shear wave velocity associated with it. This study introduces an original equation to determine these parameters. In addition, for the first time in the literature, the version of the Rayleigh method used for finding the fundamental periods of buildings is used to find the fundamental site period. The soil is modeled as an equivalent shear beam to obtain the proposed equation. The peak displacement is obtained by acting the soil mass as an external load on the equivalent shear beam. For single-layer soil, the fundamental site period is proportional to the square root of the peak displacement of the equivalent shear beam. The least squares method generalizes the proposed relation for single-layer soils to multi-layer soil profiles. Modified Finite element Transfer matrix method is used for calibration in the least squares method. The equations used in the literature and earthquake codes for determining the fundamental site period and average shear velocity are tested on various examples, and it is shown that the method proposed in this study, along with the Rayleigh method, gives better results than these equations. The performances of these two methods and the five commonly used equations are tested and compared on different soil profiles. Transfer functions, Finite Element Method (SAP200) and Modified Finite Element Transfer Matrix Method are used for verification. For all soil profiles, the results obtained from the transfer function, Finite Element Method (SAP200) and Modified Finite Element Transfer Matrix Method are found to be in agreement. The true percent relative error found in the results obtained with the proposed method is 4.47%.