Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RASMUSSEN INVARIANT, SLICE-BENNEQUIN INEQUALITY, AND SLICENESS OF KNOTS

    We use recently introduced Rasmussen invariant to find knots that are topologically locally-flatly slice but not smoothly slice. We note that this invariant can be used to give a combinatorial proof of the slice-Bennequin inequality. Finally, we compute the Rasmussen invariant for quasipositive knots and show that most of our examples of non-slice knots are not quasipositive and, to the best of our knowledge, were previously unknown.

  • articleNo Access

    THE ALGEBRAIC CONCORDANCE ORDER OF A KNOT

    The algebraic concordance group contains elements of order two, four, and of infinite order. Elements of infinite order are detected by the signature function. This paper develops computable invariants to simplify the computation of the order of torsion classes. The results are applied to determine the algebraic orders of all prime knots of 12 or fewer crossings.

  • articleNo Access

    The non-orientable 4-genus for knots with 10 crossings

    Given a knot in the 3-sphere, the non-orientable 4-genus or 4-dimensional crosscap number of a knot is the minimal first Betti number of non-orientable surfaces, smoothly and properly embedded in the 4-ball, with boundary the knot. In this paper, we calculate the non-orientable 4-genus of knots with crossing number 10.

  • articleNo Access

    The non-orientable 4-genus of 11 crossing non-alternating knots

    The non-orientable 4-genus of a knot K in S3 is defined to be the minimum first Betti number of a non-orientable surface F smoothly embedded in B4 so that K bounds F. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a Möbius band given by the double branched cover of S3 branched over K.