Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    When is the set of embeddings finite up to isotopy?

    Given a manifold N and a number m, we study the following question: is the set of isotopy classes of embeddingsN → Smfinite? In case when the manifold N is a sphere the answer was given by A. Haefliger in 1966. In case when the manifold N is a disjoint union of spheres the answer was given by D. Crowley, S. Ferry and the author in 2011. We consider the next natural case when N is a product of two spheres. In the following theorem, FCS(i, j) ⊂ ℤ2 is a specific set depending only on the parity of i and j which is defined in the paper.

    Theorem.Assume thatm > 2p + q + 2andm < p + 3q/2 + 2. Then the set of isotopy classes ofC1-smooth embeddingsSp × Sq → Smis infinite if and only if eitherq + 1orp + q + 1is divisible by 4, or there exists a point(x, y)in the setFCS(m - p - q, m - q)such that(m - p - q - 2)x + (m - q - 2)y = m - 3.

    Our approach is based on a group structure on the set of embeddings and a new exact sequence, which in some sense reduces the classification of embeddings Sp × Sq → Sm to the classification of embeddings Sp+q ⊔ Sq → Sm and Dp × Sq → Sm. The latter classification problems are reduced to homotopy ones, which are solved rationally.

  • articleNo Access

    SPLINE APPROXIMATIONS ON MANIFOLDS

    A method of construction of the local approximations in the case of functions defined on n-dimensional (n ≥ 1) smooth manifold with boundary is proposed. In particular, spline and finite-element methods on manifold are discussed. Nondegenerate simplicial subdivision of the manifold is introduced and a simple method for evaluations of approach is examined (the evaluations are optimal as to N-width of corresponding compact set).