Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Disappearance and reappearance of chaos

    The disappearance and reappearance of chaos by adjusting the internal parameters of dynamics in Lorenz system are studied. We observe monotonous and periodic time-dependent changes of Rayleigh number. There exists relaxation time for the disappearance of chaos, when we use the snapshot attractors to observe the change of the system attractors. We show that the rate of disappearance and reappearance of chaos is positively correlated with the control parameters. To reflect the relaxation phenomenon of chaotic disappearance and the sensitivity of trajectory, the concept of finite-time Lyapunov exponent is used. Then the statistical characteristics of the system can be presented by standard deviation. The chaotic disappearance and reappearance are manifested in the decrease and increase of the standard deviation. The standard deviation decreases continuously during chaotic disappearance, but increases discontinuously during chaotic reappearance. A distinctive scenario is that no matter which parameter changes, when we use the same rate of change in the process of chaotic disappearance and reappearance, their paths are different.