Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Equilibrium and nonequilibrium models on Solomon networks

    We investigate the critical properties of the equilibrium and nonequilibrium systems on Solomon networks. The equilibrium and nonequilibrium systems studied here are the Ising and Majority-vote models, respectively. These systems are simulated by applying the Monte Carlo method. We calculate the critical points, as well as the critical exponents ratio γν, βν and 1ν. We find that both systems present identical exponents on Solomon networks and are of different universality class as the regular two-dimensional ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.

  • articleNo Access

    Equilibrium and nonequilibrium models on solomon networks with two square lattices

    We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios γν, βν, and 1ν. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.