Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Space-Time Discontinuous Galerkin Spectral Element Method for Nonlinear Hyperbolic Problems

    A space-time discontinuous Galerkin spectral element method is combined with two different approaches for treating problems with discontinuous solutions: (i) adding a space-time dependent artificial viscosity, and (ii) tracking the discontinuity with space-time spectral accuracy. A Picard iteration method is employed to solve nonlinear system of equations derived from the space-time DG spectral element discretization. Spectral accuracy in both space and time is demonstrated for the Burgers’ equation with a smooth solution. For tests with discontinuities, the present space-time method enables better accuracy at capturing the shock strength in the element containing shock when higher order polynomials in both space and time are used. The spectral accuracy of the shock speed and location is demonstrated for the solution of the inviscid Burgers’ equation obtained by the tracking method.