Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM

    We propose and analyze a discontinuous Galerkin approximation for the Stokes problem. The finite element triangulation employed is not required to be conforming and we use discontinuous pressures and velocities. No additional unknown fields need to be introduced, but only suitable bilinear forms defined on the interfaces between the elements, involving the jumps of the velocity and the average of the pressure. We consider hp approximations using ℚk′–ℚk velocity-pressure pairs with k′ = k + 2, k + 1, k. Our methods show better stability properties than the corresponding conforming ones. We prove that our first two choices of velocity spaces ensure uniform divergence stability with respect to the mesh size h. Numerical results show that they are uniformly stable with respect to the local polynomial degree k, a property that has no analog in the conforming case. An explicit bound in k which is not sharp is also proven. Numerical results show that if equal order approximation is chosen for the velocity and pressure, no spurious pressure modes are present but the method is not uniformly stable either with respect to h or k. We derive a priori error estimates generalizing the abstract theory of mixed methods. Optimal error estimates in h are proven. As for discontinuous Galerkin methods for scalar diffusive problems, half of the power of k is lost for p and hp pproximations independently of the divergence stability.

  • articleNo Access

    COMPUTING HIGHLY ACCURATE SOLUTIONS OF A TUMOUR ANGIOGENESIS MODEL

    In this paper we describe and implement a numerical method which provides highly accurate solutions of a generic two-dimensional model for the formation of capillary networks as a partial process in tumour angiogenesis. The model includes effects due to diffusion, chemotaxis, haptotaxis and cell proliferation. The governing partial differential equation is a diffusion-advection-reaction equation of parabolic type. In order to achieve high accuracy in space, we use a semi-discretisation based on the spectral element method. The resulting system of stiff ordinary differential equations is advanced forward in time using one-step explicit higher order time integrators based on Taylor series expansions. The high accuracy in space is monitored by a residual based a posteriori error indicator while the high accuracy in time is guaranteed by the local and global truncation errors of the higher order Taylor series method.

  • articleNo Access

    SPECTRAL ELEMENT METHOD FOR ACOUSTIC PROPAGATION PROBLEMS BASED ON LINEARIZED EULER EQUATIONS

    A Chebyshev spectral element approximation of acoustic propagation problems based on linearized Euler equations is introduced, and the numerical approach is based on spectral elements in space with first-order Clayton–Engquist–Majda absorbing boundary conditions and implicit Newmark method in time. An initial perturbation problem has been solved to test the accuracy and stability of the numerical method. Then the sound propagation by source terms is also studied, including the radiation of a monopole and dipolar source in both stationary medium and uniform mean flow. The numerical simulation leads to good results in both accuracy and stability. Compared with the analytical solutions, the numerical results show the advantages in spectral accuracy even with relatively fewer grid points. Moreover, the implicit Newmark method in time marching also presents its superiority in stability. Finally, a problem of sound propagation in pipes is simulated as well.

  • articleNo Access

    Spectral BEM for the Analysis of Wave Propagation and Fracture Mechanics

    This paper presents a spectral boundary element formulation for analysis of structures subjected to dynamic loading. Two types of spectral elements based on Lobatto polynomials and Legendre polynomials are used. Two-dimensional analyses of elastic wave propagation in solids with and without cracks are carried out in the Laplace frequency domain with both conventional BEM and the spectral BEM. By imposing the requirement of the same level of accuracy, it was found that the use of spectral elements, compared with conventional quadratic elements, reduced the total number of nodes required for modeling high-frequency wave propagation. Benchmark examples included a simple one-dimensional bar for which analytical solution is available and a more complex crack problem where stress intensity factors were evaluated. Special crack tip elements are developed for the first time for the spectral elements to accurately model the crack tip fields. Although more integration points were used for the integrals associated with spectral elements than the conventional quadratic elements, shorter computation times were achieved through the application of the spectral BEM. This indicates that the spectral BEM is a more efficient method for the numerical modeling of structural health monitoring (SHM) processes, in which high-frequency waves are commonly used to detect damage, such as cracks, in structures.

  • articleNo Access

    The Double Absorbing Boundary Method Incorporated in a High-Order Spectral Element Formulation

    In this paper, we consider the numerical solution of the time-dependent wave equation in a semi-infinite waveguide. We employ the Double Absorbing Boundary (DAB) method, by introducing two parallel artificial boundaries on the side where waves are outgoing. In contrast to the original implementation of the DAB, where the numerical solution involved either a low-order finite difference scheme or a low-order finite element scheme, here we incorporate the DAB into a high-order spectral element formulation, which provides us with very accurate solutions of wave problems in unbounded domains. This is demonstrated by numerical experiments. While the method is highly accurate, it suffers from long-time instability. We show how to postpone the onset of the instability by a prudent choice of the computational parameters.