Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The next generation of wireless system is expected to provide multimedia, multi class services any time anywhere with seamless mobility and Quality of Service (QoS). In such environment, vertical handoff management plays an important and challenging role. Some of the main functions of vertical handoff management are: to implement appropriate vertical handoff decision to minimize number of unnecessary handoff, to maintain minimum vertical handoff latency for seamless mobility and to provide guaranteed acceptable QoS required for user satisfaction. Thus, in this paper to avoid unnecessary handoff in integrated heterogeneous network we have proposed that the vertical handoff decision depends on coverage area of the network and the speed of the Mobile Node. Application specific cut-off speed for particular coverage range of network during which handoff is beneficial has been determined. Real time applications like HDTV, MPEG-4, and H.261 are considered in integrated heterogeneous network of UMTS (Universal Mobile Telecommunication System) and WLAN. Vertical handoff latency is analyzed for varied network traffic load, types of application and varied speed of Mobile Node. Effect of Mobile Node speed on packet loss is also analyzed. Finally, to satisfy user with acceptable end to end QoS, especially in the presence of heterogeneous integrated networks where every network has individual QoS, an end to end QoS mapping scheme between UMTS and WLAN integrated network has been proposed. The simulation is performed using Network Simulator NS-2 with NIST (National Institute of Standards and Technology) add on module.
Extending the single optimized spaced seed of PatternHunter20 to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of Smith–Waterman, for homology search. At Blastn speed, PatternHunter II approaches Smith–Waterman sensitivity, bringing homology search methodology research back to a full circle.
The damage pattern observed during the 1819 Kutch earthquake and 2001 Bhuj earthquake of magnitude Mw>7.7 in India implied the significance of the effect of Kutch basin on seismic ground motion. In the present study, the Kutch rift basin is modeled as a simplified rectangular basin of size 150km × 90km × 1.5km. The shear wave velocity of the Kutch region varies from 300m/s at the surface to 800m/s at the depth of 60m. Three-dimensional ground response analysis is carried out for the simplified Kutch basin subjected to ricker wave, using the spectral element code SPEED. The soil medium is modeled through visco-elastic soil model, where the damping is represented by Quality factor. It is found out from the numerical analysis that maximum amplification of 3.6 times occurs at the corner of the basin where interference of waves reflected from multiple edges happen. The long period structures with fundamental period in the range of 1.5–2.5s located near the basin edge are found to be significantly affected by the basin effect.
Recently, there are more people jogging with a treadmill at the gym or the home setting. The main available selected modes for treadmill jogging are speed and slope of incline. Increased speeds and incline slopes will not only increase the cardiopulmonary loading but may also alter the lower extremity (LE) movement patterns. There are few systematic investigations of the effect of the speed and incline on LE kinematics. Most studies have used 2D methods which focused on movements in sagittal plane only and this has limitations in the acquired data since lower extremity movements also include frontal and transverse planes. The current study aimed to investigate LE movement during jogging at different speeds and incline slopes using a high speed three-dimensional (3D) motion analysis system.
Eighteen young healthy males were recruited. The video-based motion capture system with six CCD cameras, HIRES Expert Vision System (Motion Analysis Corporation, CA, USA), was used to collect kinematic data at a sampling frequency of 120Hz. Nineteen passive reflective markers were attached to bilateral lower extremities of the subject. The joint angle is calculated by Euler angle using the rotation sequence: 2-1-3 (y-x′-z″). Four speeds were selected: 2 m/s, 2.5 m/s, 3 m/s, 3.5 m/s with the slope at 0, and four slopes were selected: 0%, 5%,10%,15% at a speed of 3 m/s. Repeated-measures ANOVA was used to test hypotheses regarding changes in jogging condition on LE kinematic variables. The significance level was set at 0.05.
As the jogging slope increased, the hip, knee and ankle demonstrated a significantly greater maximum flexion in swing phase (p<0.001), but the maximum extension angles in stance phase were relatively unchanged. Increased LE flexion during swing phase is important to ensure foot clearance with increased slope. For increased speed, the hip and ankle joints had significantly greater maximum joint extension angles during stance phase and the hip and knee joint had significantly larger maximum flexion angles in swing phase (p<0.001). Increased motion during swing phase account for a larger step length and increased motion during stance phase may facilitate the generation of power during forward propulsion as the jogging speed increased. As the slope and speed increased, LE movement patterns were changed in the transverse plane: the significantly increased (p<0.01) internal hip rotation at terminal stance, the increased toe-in of foot (p<0.001) during terminal stance phase and decreased (p<0.05) toe-out during swing phase. Increased hip motion in transverse plane could lengthen the stride distance and increase foot toe-in for providing a stable lever for push off to increase propulsion force as speed or slope is increased. By way of systematic 3D kinematic investigation of the LE in jogging, the results further elucidate the effect of changing speed and incline on LE joints movements. This information could provide guidelines for rehabilitation clinicians or coaches to select an appropriate training mode for jogging.
Despite the growing popularity in recent years of elliptical exercise (EE), little is known regarding the loadings applied to the body during EE. Since overloading to the body may lead to early fatigue of the muscles and increase the incidence of overuse injuries, such information is necessary for safe use of the elliptical trainer (ET) as a fitness tool. The current study aimed to determine the typical patterns and loading rates of the measured pedal reaction forces (PRF), and to quantify their differences from those during level walking, and the effects of pedaling rate. Fifteen male adults performed level walking and EE while 3D marker data, right PRFs and ground reaction forces (GRF) were measured. The parameters of the ET were set for two different pedal rates: 50 rpm and 70 rpm. For each pedal rate, the parameters were set to match the variables measured during level walking, with a mean step length of 55% leg length and no workload. During early stance the vertical PRF was smaller than the GRF, while the medial and posterior PRF were greater. PRFs also occurred during swing. Loading rates around heelstrike during EE were all smaller than those during walking. The medial, anterior and posterior PRF, as well as the medial and vertial loading rates increased with increasing pedal rates. The basic force patterns of EE and the effects of pedal rate were established in order to determine the true potential for such instrumentation in locomotion analysis. The results will be helpful for future related studies.
Each rapid prototyping (RP) process has its special and unique advantages and disadvantages. The chapter presents a state-of-the-art study of RP technologies and classifies broadly all the different types of rapid prototyping methods. Subsequently, the fundamental principles and technological limitations of different methods of RP will be closely examined. Comparison of the present and ultimate performance of the rapid prototyping processes will be made so as to highlight the possibility of future improvements for a new generation of RP system.
Based on the classical control theory, this paper proposes an adjustable speed motor control model with minimum ripple effect. This feasibility study was conducted and simulated in Matlab using three typical input signals: the unit step, unit speed and acceleration. The simulation results shown that, the minimum ripple controller could ensure the speed of the electromagnetic speed control motor followed the expected speed in the shortest sampling cycle, to achieve the steady-state error of the system to zero. However, it only follows a particular input signal and therefore when the input signals vary, the controllers need to be calibrated separately to follow the signals, hence, with an electromagnetic adjustable speed motor, it is feasible to control a thin coal seam electrical traction shearer with minimum ripple effect.
In the current vessels is commonly used way of heaving line throwing outype, port type, rotary, centrifugal several, but every way heaving line is based on the power, speed is the core of speed strength of throwing project. The crew in the process of throwing by their own power to heaving line heads certain initial velocity. In this paper, through literature, survey, according to the theory of sports biomechanics, mechanics, sports anatomy for theory basis, combining the theory of track and field technique and related process of heaving line throwing discus throwing power points the swimmer is studied. Purpose is heaving line throwing theory; provide certain scientific basis for improving throwing distance.
The transfer part length of the pushing gauge shall be correspondingly increased with the increase of the paper format. According to the principle of tension degree and buffer length, the chain link number N of the laminating machine 1600 is determined. The drive system drawing is drawn through calculation and analysis of tooth number of each part of the laminating machine. Tooth number of each part is calculated through applying the method of continued fractions, and the original drive system drawing is then modified. Speed and correlation of each element are determined through comparison of the speed of laminating machine 1300 and laminating machine 1600.