Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Some Quot schemes in tilted hearts and moduli spaces of stable pairs

    For a smooth projective variety X, we study analogs of Quot schemes using hearts of non-standard t-structures of Db(Coh(X)). The technical framework uses families of t-structures as studied in A. Bayer, M. Lahoz, E. Macrì, H. Nuer, A. Perry and P. Stellari, Stability conditions in families, preprint (2019), arXiv:1902.08184. We provide several examples and suggest possible directions of further investigation, as we reinterpret moduli spaces of stable pairs, in the sense of M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117(2) (1994) 317–353; D. Huybrechts and M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom. 4(1) (1995) 67–104, as instances of Quot schemes.

  • articleNo Access

    STABLE PAIRS

    For a finite semigroup S and pseudovariety V, (Y, T) is a V-stable pair of S iff Y ⊆ S, T ≤ S and for any relational morphism R : S ⇝ V with V ∈ V there exists a v ∈ V such that Y ⊆ R-1(v) and T ≤ R-1(Stab(v)). X ≤ S is stable if it is generated by an formula-chain {ai} with aiaj = ai for j < i. Given a relation R : S ⇝ A ∈ A (where A denotes the pseudovariety of aperiodic semigroups) that computes PlA(S), we construct a new relation R : S ⇝ (A(M))# that computes A-stable pairs. This proves the main result of this paper: (Y, T) is an A-stable pair of S iff T ≤ ∪ X for some stableX ≤ PlA(S) and Y ⊆ Y' for some Y' ∈ PlA(S) with Y'x = Y' for all x ∈ X. As a corollary we get that if V is a local pseudovariety of semigroups, then V * A has decidable membership problem.

  • articleNo Access

    A PROFINITE APPROACH TO STABLE PAIRS

    We give a short proof, using profinite techniques, that idempotent pointlikes, stable pairs and triples are decidable for the pseudovariety of aperiodic monoids. Stable pairs are also described for the pseudovariety of all finite monoids.