Functionals of Brownian motion can be dealt with by realizing them as functional of white noise. Specifically, for quadratic functionals of Brownian motion, such a realization is a powerful tool to investigate them. There is a one-to-one correspondence between a quadratic functional of white noise and a symmetric L2(R2)-function which is considered as an integral kernel. By using well-known results on the integral operator we can study probabilistic properties of quadratic or certain exponential functionals of white noise. Two examples will illustrate their significance.