Please login to be able to save your searches and receive alerts for new content matching your search criteria.
There are three kinds of isolators commonly used in storage tank, friction pendulum bearing (FPB), laminated rubber bearing (LRB), and variable curvature friction pendulum bearing (VCFPB), respectively. Real-time hybrid simulation is conducted in this paper to compare the seismic performance of the storage tank isolated by the above three types of bearings. The storage tank is used as the physical substructure for experimental testing, and the isolators are adopted as the numerical substructure for numerical simulation. The isolation performance is estimated by the following perspectives: deformation of the isolator, shear force, overturning moment, and input energy. Test results show that the deformation of LRB is the largest, which can be twice that of FPB, and that larger deformation will enlarge the seismic energy input into the storage tank. Moreover, the low-frequency components of shear force and overturning moment are amplified by LRB. In contrast, the FPB and VCFPB have a good performance on all frequency bands. Particularly, the softening mechanism enables VCFPB to have better seismic performance and have a reduction rate of about twice that of LRB.
In this paper, a numerical model is developed based on coupled boundary element–finite element methods (BEM–FEM) to minimize liquid sloshing pressure in trapezoidal tank with different sidewall angles. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have already been studied for ship storage tanks by other researchers. In this paper, a new arrangement, i.e., trapezoidal containers is suggested for liquid storage tanks. The tank shape is optimized based on sloshing pressures and forces for a range of frequencies and amplitudes of sway motion and tank configuration. Fluid is considered to be incompressible and inviscid. Therefore, Laplace equation and nonlinear free surface boundary conditions are used to model the sloshing phenomenon. The results validated using available data showed that a new arrangement of trapezoidal storage panels has a better efficiency against sloshing phenomenon than the conventional rectangular tanks.