Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Extensions of bundles of C*-algebras

    Bundles of C*-algebras can be used to represent limits of physical theories whose algebraic structure depends on the value of a parameter. The primary example is the 0 limit of the C*-algebras of physical quantities in quantum theories, represented in the framework of strict deformation quantization. In this paper, we understand such limiting procedures in terms of the extension of a bundle of C*-algebras to some limiting value of a parameter. We prove existence and uniqueness results for such extensions. Moreover, we show that such extensions are functorial for the C*-product, dynamical automorphisms, and the Lie bracket (in the 0 case) on the fiber C*-algebras.

  • articleNo Access

    Classical limits of Hilbert bimodules as symplectic dual pairs

    Hilbert bimodules are morphisms between C*-algebraic models of quantum systems, while symplectic dual pairs are morphisms between Poisson geometric models of classical systems. Both of these morphisms preserve representation-theoretic structures of the relevant types of models. Previously, it has been shown that one can functorially associate certain symplectic dual pairs to Hilbert bimodules through strict deformation quantization. We show that, in the inverse direction, strict deformation quantization also allows one to functorially take the classical limit of a Hilbert bimodule to reconstruct a symplectic dual pair.

  • articleNo Access

    SYMPLECTIC CONNECTIONS

    This article is an overview of the results obtained in recent years on symplectic connections. We present what is known about preferred connections (critical points of a variational principle). The class of Ricci-type connections (for which the curvature is entirely determined by the Ricci tensor) is described in detail, as well as its far-reaching generalization to special connections. A twistorial construction shows a relation between Ricci-type connections and complex geometry. We give a construction of Ricci-flat symplectic connections. We end up by presenting, through an explicit example, an approach to non-commutative symplectic symmetric spaces.