Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Identifying brain abnormalities in autism spectrum disorder (ASD) is critical for early diagnosis and intervention. To explore brain differences in ASD and typical development (TD) individuals by detecting structural features using T1-weighted magnetic resonance imaging (MRI), we developed a deep learning-based approach, three-dimensional (3D)-ResNet with inception (I-ResNet), to identify participants with ASD and TD and propose a gradient-based backtracking method to pinpoint image areas that I-ResNet uses more heavily for classification. The proposed method was implemented in a preschool dataset with 110 participants and a public autism brain imaging data exchange (ABIDE) dataset with 1099 participants. An extra epilepsy dataset with 200 participants with clear degeneration in the parahippocampal area was applied as a verification and an extension. Among the datasets, we detected nine brain areas that differed significantly between ASD and TD. From the ROC in PASD and ABIDE, the sensitivity was 0.88 and 0.86, specificity was 0.75 and 0.62, and area under the curve was 0.787 and 0.856. In a word, I-ResNet with gradient-based backtracking could identify brain differences between ASD and TD. This study provides an alternative computer-aided technique for helping physicians to diagnose and screen children with an potential risk of ASD with deep learning model.
Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.