System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
A Generalized Multiresolution Analysis (GMRA) associated with a wavelet is a sequence of nested subspaces of the function space ℒ2(ℝ), with specific properties, and arranged in such a way that each of the subspaces corresponds to a scale 2m over all time-shifts n. These subspaces can be expressed in terms of a generating-wandering subspace — of the dyadic-scaling operator — spanned by orthonormal wavelet-functions — generated from the wavelet. In this paper we show that a GMRA can also be expressed in terms of subspaces for each time-shift n over all scales 2m. This is achieved by means of "elementary" reducing subspaces of the dyadic-scaling operator. Consequently, Time-Shifts GMRA associated with wavelets, as well as "sub-GMRA" associated with "sub-wavelets" will then be introduced.
Let the operators D and T be the dilation-by-2 and translation-by-1 on , which are both bilateral shifts of infinite multiplicity. If ψ(·) in is a wavelet, then {DmTnψ(·)}(m,n)∈ℤ2 is an orthonormal basis for the Hilbert space but the reversed set {TnDmψ(·)}(n,m)∈ℤ2 is not. In this paper we investigate the role of the reversed functions TnDmψ(·) in wavelet theory. As a consequence, we exhibit an orthogonal decomposition of into T-reducing subspaces upon which part of the bilateral shift T consists of a countably infinite direct sum of bilateral shifts of multiplicity one, which mirrors a well-known decomposition of the bilateral shift D.