Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we begin the classification of coherent systems (E,V) on the projective line which are stable with respect to some value of a parameter α. In particular we show that the moduli spaces, if non-empty, are always smooth and irreducible of the expected dimension. We obtain necessary conditions for non-emptiness and, when dim V=1 or 2, we determine these conditions precisely. We also obtain partial results in some other cases.