Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    On 5ψ5 identities of Bailey

    In this paper, we provide proofs of two 5ψ5 summation formulas of Bailey using a 5ϕ4 identity of Carlitz. We show that in the limiting case, the two 5ψ5 identities give rise to two 3ψ3 summation formulas of Bailey. Finally, we prove the two 3ψ3 identities using a technique initially used by Ismail to prove Ramanujan’s 1ψ1 summation formula and later by Ismail and Askey to prove Bailey’s very-well-poised 6ψ6 sum.