Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Nanostructured Al-doped Zinc oxide (ZnO) thin films were deposited on glass substrate by chemical bath deposition (CBD) using aqueous zinc nitrate solution and subjected for different characterizations. Effect of Al3+ substitution on the properties of ZnO annealed at 400∘C was studied by XRD and UV-Vis for structural studies, SEM and TEM for surface morphology and DC four probe resistivity measurements for electrical properties. Al3+ substitution does not influence the morphology and well-known peaks related to wurtzite structure of ZnO. Electron microscopy (SEM and TEM) confirms rod shaped Al-doped ZnO nanocrystals with average width of 50nm. The optical band gap determined by UV–Visible spectroscopy was found to be in the range 3.37eV to 3.44eV. An EPR spectrum of AZO reveals peak at g=1.96 is due to shallow donors Zn interstitial. The DC electrical resistivity measurements of Al-doped ZnO show a minimum resistivity of 3.77×10−2Ω-cm. Therefore, these samples have potential use in n-type window layer in optoelectronic devices, organic solar cells, photonic crystals, photo-detectors, light emitting diodes (LEDs), gas sensors and chemical sensors.