Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we consider the problem of describing the costandard modules ∇(λ) of a Schur superalgebra S(m|n,r) over a base field K of arbitrary characteristic. Precisely, if G = GL(m|n) is a general linear supergroup and Dist(G) its distribution superalgebra we compute the images of the Kostant ℤ-form under the epimorphism Dist(G) → S(m|n,r). Then, we describe ∇(λ) as the null-space of some set of superderivations and we obtain an isomorphism ∇(λ) ≈ ∇(λ+|0) ⊗ ∇(0|λ-) assuming that λ = (λ+|λ-) and λm = 0. If char(K) = p we give a Frobenius isomorphism ∇(0|pμ) ≈ ∇(μ)p where ∇(μ) is a costandard module of the ordinary Schur algebra S(n,r). Finally we provide a characteristic free linear basis for ∇(λ|0) which is parametrized by a set of superstandard tableaux.