Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Rapid Reactions of Phthalocyanines with Tellurium Tetrachloride in Non-aqueous Solutions

    Rapid reactions of tetra(tert-butyl)phthalocyanine, H2(tbpc), and its zinc complex, [Zn(tbpc)], with tellurium tetrachloride (TeCl4) in non-aqueous solutions have been investigated. Upon mixing respective solutions containing the reactants, drastic spectral changes occurred in chloroform and toluene even at room temperature. The electronic spectra of the products indicated that the reactions involved an acid-base equilibrium where the phthalocyanines and tellurium tetrachloride acted as a Lewis base and a Lewis acid respectively. By monitoring the spectral changes based on various initial molar ratios of the reactants, the compositions of the products for each system have been determined. [Zn(tbpc)] formed a 1:1 (tbpc:TeCl4) adduct in both chloroform and toluene, showing the same spectra close to those of the known monoprotonated phthalocyanines. On the other hand, H2(tbpc) formed a 1:1 adduct in chloroform but a 1:3 adduct in toluene even though both products showed essentially the same spectra close to those of the known diprotonated phthalocyanines. Equilibrium constants have been calculated for the four systems. Magnetic circular dichroism (MCD) spectra of conjugated acids of phthalocyanines have been studied for the first time.

  • articleNo Access

    Recent developments in the coordination chemistry of porphyrin complexes containing non-metallic and semi-metallic elements

    Recent advances in the chemistry of main group porphyrin complexes are surveyed. New, unprecedented structural types for porphyrin complexes which have been revealed from the recent reports of boron and tellurium porphyrins are described. Advances in the preparation and reactivity of Group 14 (silicon and tin) and Group 15 porphyrin complexes are discussed. A systematic variation in the out-of-plane distortion (ruffling) of light element Group 14 and 15 porphyrin complexes has become apparent now that a significant number of structurally characterized examples are at hand.

  • articleNo Access

    A flexible expanded heterocorrole: Tellura[22]porphyrin(6.1.1.0)

    An expanded heterocorrole, meso-tetraaryl-tellura[22]porphyrin(6.1.1.0), containing a bipyrrole moiety and a six-carbon long link, has been synthesized. The reaction path proceeds through a controlled acid-promoted extrusion of one tellurium atom from meso-aryl-26,28-ditellurasapphyrin, leading to a structure where one tellurophene ring of the substrate is replaced by a bridging acyclic four-carbon unit. This aromatic porphyrin-annulene hybrid is conformationally flexible in solution, on account of the C4 unit adopting two different configurations: trans–cis–trans or all-trans. Studies of the dynamic behavior of tellura[22]porphyrin(6.1.1.0) in solution were performed by means of 1H and 125Te NMR spectroscopy. The X-ray structure of the all-trans form with trapezoid macrocyclic skeleton is also presented.