Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Consider an n×n system of hyperbolic balance laws with coinciding shock and rarefaction curves. This note proves the well-posedness in the large of this system, provided there exists a domain that is invariant both with respect to the homogeneous conservation law and to the ordinary differential system generated by the right-hand side. No "non-resonance" hypothesis is assumed.
We consider an initial boundary value problem for a 2 × 2 system of conservation laws modeling heatless adsorption of a gaseous mixture with two species and instantaneous exchange kinetics, close to the system of chromatography. In this model the velocity is not constant because the sorption effect is taken into account. Exchanging the roles of the x, t variables we obtain a strictly hyperbolic system with a zero eigenvalue. Our aim is to construct a solution with a velocity which blows up at the corresponding characteristic "hyperbolic boundary" {t = 0}.