The absorption characteristics of a photoexcited metamaterial absorber at terahertz frequencies were analyzed in this study. Filling photosensitive semiconductor silicon into the gap between the resonator arms leads to modulation of its electromagnetic response through a pump beam which changes conductivity of silicon. Comparisons of terahertz absorbing properties which were caused by different thicknesses and dielectric constants of polyimide, cell sizes and widths of SRRs, and lengths and conductivities of the photosensitive silicon, were studied by using Finite Difference Time Domain (FDTD) from 0.4 THz to 1.6 THz. The results of this study will facilitate the design and preparation of terahertz modulator, filters and absorbers.