Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The thermal quantum discord (QD) is investigated in the two-qubit anisotropic Heisenberg XXZ model under an external non-uniform magnetic field along the Z-axis. We obtain the analytical expressions of the thermal QD and thermal entanglement measured by concurrence (C). It shows that for any temperature T, QD gradually decreases with the increase of non-uniform magnetic field |b|, in some regions where C increases while QD decreases. It is also found that thermal quantum discord does not vanish at finite temperatures, but concurrence vanishes completely at a critical temperature. It is shown that for a higher value of JZ, the system has a stronger QD. There is a critical magnetic field Bc, which increases with the increasing b. QD decay monotonically (for B < Bc) when temperature T increases, or initially increases to some peaks and then decrease (for B > Bc).
We provide a simple and clear verification of the physical need for temperature gradients in equilibrium states when gravitational fields are present. Our argument will be built in a completely kinematic manner, in terms of the gravitational redshift/blueshift of light, together with a relativistic extension of Maxwell’s two column argument. We conclude by showing that it is the universality of the gravitational interaction (the uniqueness of free-fall) that ultimately permits Tolman’s equilibrium temperature gradients without any violation of the laws of thermodynamics.
We investigate the conditions under which particle multiplicities in high energy collisions are Boltzmann distributed, as is the case for hadron production in e+e-, pp, and heavy ion collisions. We show that the apparent temperature governing this distribution does not necessarily imply equilibrium (thermal or chemical) in the usual sense. We discuss an explicit example using tree level amplitudes for N photon production in which a Boltzmann-like distribution is obtained without any equilibration. We argue that the failure of statistical techniques based on free particle ensembles may provide a signal for collective phenomena (such as large shifts in masses and widths of resonances) related to the QCD phase transition.
In (Nature) Science Report 5 (2015) 13653, Vadai, Mingesz and Gingl (VMG) introduce a new Kirchhoff-law-Johnson-noise (KLJN) secure key exchanger that operates with 4 arbitrary resistors (instead of 2 arbitrary resistance values forming 2 identical resistor pairs in the original system). They state that in this new, VMG-KLJN, non-equilibrium system with nonzero power flow, the security during the exchange of the two (HL and LH) bit values is as strong as in the original KLJN scheme. Moreover, they claim that, at practical conditions, their VMG-KLJN protocol “supports more robust protection against attacks”. First, we investigate the power flow and thermal equilibrium issues of the VMG-KLJN system with 4 arbitrary resistors. Then we introduce a new KLJN protocol that allows the arbitrary choice of 3 resistors from the 4, while it still operates with zero power flow during the exchange of single bits by utilizing a specific value of the 4th resistor and a binary temperature set for the exchanged (HL and LH) bit values. Then we show that, in general, the KLJN schemes with more than 2 arbitrary resistors (including our new protocol mentioned above) are prone to 4 new passive attacks utilizing the parasitic capacitance and inductance in the cable, while the original KLJN scheme is naturally immune against these new attacks. The core of the security vulnerability exploited by these attacks is the different line resistances in the HL and LH cases. Therefore, on the contrary of the statement and claim cited above, the practical VMG-KLJN system is less secure than the original KLJN scheme. We introduce another 2, modified, non-equilibrium KLJN systems to eliminate the vulnerability against some - but not all - of these attacks. However the price for that is the loss of arbitrariness of the selection of the 4th resistor and the information leak still remains greater than zero.
In the context of cubic gravity for flat FRW metric we discuss the behavior of cosmological parameters (equation of state (EoS) parameter and square speed of sound) at Hubble horizon with the four different models of Hubble parameter. We observe the validity of generalized second law of thermodynamics (GSLT) and thermal equilibrium condition. It is found that cosmological parameters lie within the observational constraints. Also, GSLT and thermal equilibrium condition holds in almost all cases of Hubble parameter.
We review the research results obtained in collaboration with Jürg Fröhlich and Israel Michael Sigal on relaxation of initial states of a (generalized) spin-boson system at positive temperature to its (unique) thermal equilibrium KMS state [6].
Based on the classical heat transfer theory, a heat transfer model of the resistance divider is founded in this article, and the heat transfer process of the resistance divider is analyzed at thermal equilibrium. An iterative algorithm is described to calculate the temperature distribution and heat dissipation of the resistance divider at thermal equilibrium. The temperature distribution and heat dissipation of a resistance divider which has typical size is calculated. The result of the temperature distribution and heat dissipation is researched, and these influence factors for oil temperature just as air temperature and the power of divider are also researched.