Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Viscous Dissipation, Inclined Magnetic Field and Joule Heating Impacts on Mixed Convection MHD Oscillatory Diffusion-Radiative Casson Fluid Flow with Chemical Reaction Over a Slanted Vertical Porous Plate

    Nano28 Aug 2024

    This work analyzed numerically the impacts of viscous dissipation, Joule heating and inclined magnetic field on reactive-diffusion magneto-hydrodynamic radiative mixed convection oscillatory non-Newtonian Casson fluid (CF) fluxing across a slanted semi-infinite vertical plate inserted in a porous medium. The framed dimensional flow controlling partial differential equations were modified to dimensionless partial differential equations by bringing in applicable scaling variables and then numerically solved by imposing the finite difference scheme. The outcomes are established with graphical representations to inspect the flow fields’ performance for diverse flow parameters. At the same time, numerical data of skin friction and heat and mass transferal rates near the surface area are presented in a tabular format. This research study discovered that the viscous dissipation and radiation effects intensify the temperature and velocity fields while heat ingestion has a contrary effect. Both velocity and concentration distributions are diminished by the chemical reaction and Schmidt number while the converse trend was noted with thermo-diffusion effect. The velocity distribution was narrowed by the angled magnetic field, Casson parameter, and magnetic field but the porosity parameter exposed the opposite impact. The influence of the magnetic field and Casson parameters incited to decline the friction. Heat absorption in the flow makes the Nusselt number rise but improving viscous dissipation and radiation effects have pointed to an opposite trend. The chemical reaction parameter increases the Sherwood number but thermo-diffusion decreases it. Further, validation with already published results is accomplished and an excellent agreement is realized.

  • articleFree Access

    Unsteady dynamical analysis of convective hydromagnetic thermal migration of chemically reacting tiny species with dissipation and radiation in an inclined porous plate

    The essence of the current examination is to carry out thermofluid parametric sensitivity with time-varying thermal migration of chemically reactive tiny species across an oscillating infinite plate surface. The impact of thermal motile tiny particles under the influence of many other oscillating flow parameters has yet to be investigated; hence the results obtained in this research are novel. Using a suitable non-dimensional variable, the leading PDEs (partial differential equations) are transmuted into dimensionless PDEs, ensuring equations are numerically solved using the MAPLE built-in approach. The numerical values produced in a limited scenario are linked with the outcomes found in the literature to validate the precision of the numerical approach utilized. The fluctuations in the profiles of the velocity, temperature, and concentration, in addition to the wall friction and rate of thermal and solutal transport, are illustrated via graphs and tables due to the modification of the critical parameters. The endmost results of the study concede that increasing permeability quantity and thermal and solutal buoyancy impellers intensify the fluid velocity. In contrast, a converse tendency is perceived with magnetic parameter and also, wall friction acts opposite to the velocity. The fluid temperature attenuated with dilation of the Prandtl number and radiation parameter, whilst a contrary trend was perceived with Eckert number. The increasing thermo-diffusion helps to develop fluid concentration whilst the Schmidt number and chemical reaction displayed opposite trend. Further, we achieved a tremendous conformity between the current findings and genuine results in the literature.