Bee venom (BV) has been used to relieve pain and reduce inflammation in traditional Oriental medicine, especially in chronic inflammatory diseases such as rheumatoid arthritis (RA). We previously reported that the BV injection into a traditional acupuncture point (Zusanli) reduced arthritis-associated edema and nociceptive responses in Freund's adjuvant-induced arthritis in rats (Kwon et al., 2001). This study was designed to evaluate the anti-inflammatory and anti-cytokine effect of BV on a murine type-II collagen-induced arthritis (CIA) model. Male mice were immunized by spontaneous injection of 100 μg of an emulsion of bovine type-II collagen and complete Freund's adjuvant (CFA), with a booster injection after 2 weeks. In the experimental group, 0.1 ml BV was injected at acupuncture point (Zusanli) near both knees twice a week for a total of 5 times. In the control group, normal saline was injected at the same frequencies. These injections began 5 weeks after the first collagen injection. Starting the 3rd week after the first collagen injection, we examined limb swelling and severity of arthritis twice a week. At 8 weeks, mice were sacrificed and synovial tissue was examined with the light microscope and serum cytokines (IL-1β and TNF-α) were measured by ELISA.
The incidence of arthritis, the mean arthritis index and the number of arthritic limbs were significantly lower in the treatment compared to the control group (63% versus 75%, 3.4% versus 8.5%, 23% versus 75%, respectively). Among the serum proinflammatory cytokines, the production of TNF-α in the BV group was suppressed compared to the control group (59+/-4.5 versus 99.5+/-6.5, p<0.05), but IL-1β was not suppressed. The examination of the histopathology of the joints of murine CIA showed decreased inflammation signs and less lymphocyte infiltration after BV acupuncture therapy. Acupuncture therapy with BV suppressed the development of arthritis and caused inhibition of the immune responses in type-II collagen-induced arthritis.
The inhibitory effect of Zingiber officinale Rosc (ZOR), an Oriental traditional herbal medicine, on the growth of influenza A/Aichi/2/68 (Aichi) virus was investigated in Madin-Darby canine kidney (MDCK) cells. Direct addition of ZOR (0.1 ~ 100 μg/ml) to the infected cells did not have any inhibitory effect. However, the ZOR-induced conditioned medium (ZOR-CM) of RAW cells, a murine macrophage (Mφ) cell line, exhibited an apparent inhibitory effect on MDCK cells without cytotoxicity. In accordance with the time-dependent inhibitory effect of ZOR-CM, it has been demonstrated that tumor necrosis factor (TNF)-α was gradually accumulated in ZOR-CM by the induction of TNF-α mRNA expression in ZOR-stimulated RAW cells. Conversely, the inhibitory effect of ZOR-CM was reduced significantly by the removal of TNF-α after the formation of an immune complex with anti-TNF-α monoclonal antibody. These data suggested that ZOR itself has no inhibitory effect on the growth of influenza virus, but could exert its effect via macrophage activation leading to production of TNF-α.
Sepsis is associated with the highest risk of progression to acute lung injury or acute respiratory distress syndrome. Shen-Fu has been advocated to treat many severely ill patients. Our study was designed to investigate the effect of Shen-Fu on endotoxin-induced acute lung injury in vivo. Adult male Wistar rats were randomly divided into 6 groups: controls; those challenged with endotoxin (5 mg/kg) and treated with saline; those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (1 mg/kg); those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (10 mg/kg); increase challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (100 mg/kg); saline injected and treated with Shen-Fu (100 mg/kg). TNF-α, IL-6, and NF-kappa B were investigated in the lung two hours later. Myeloperoxidase (MPO) activity and wet/dry weight ratio were investigated six hours later. Intravenous administration of endotoxin provoked significant lung injury, which was characterized by increment increase of MPO activity and wet/dry lung weight ratio, and TNF-α and IL-6 expression and NF-kappa B activation. Shen-Fu (10,100 mg/kg) decreased MPO activity and wet/dry weight ratio and inhibited TNF-α and IL-6 production, endotoxin-induced NF-kappa B activation. Our results indicated that Shen-Fu at a dose of higher than 10 mg/kg inhibited endotoxin-induced pulmonary inflammation in vivo.
Neoandrographolide, one of the principal diterpene lactones, isolated from a medicinal herb Andrographis paniculata Nees, was tested in vivo and in vitro for its anti-inflammatory activities and mechanism. Oral administration of neoandrographolide (150 mg/kg) significantly suppressed ear edema induced by dimethyl benzene in mice. Oral administration of neoandrographolide (100–150 mg/kg) also reduced the increase in vascular permeability induced by acetic acid in mice. In vitro studies were performed using the macrophage cell line RAW264.7 to study the effect of neoandrographolide on suppressing phorbol-12-myristate-13-acetate (PMA)-stimulated respiratory bursts and lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Respiratory bursts were quantified by chemiluminescence (CL) measurements.Results showed that neoandrographolide suppressed PMA-stimulated respiratory bursts dose-dependently from 30 μM to 150 μM. Neoandrographolide also inhibited NO and TNF-α production in LPS-induced macrophages, contributing to the anti-inflammatory activity of A. paniculata. These results indicate that neoandrographolide possesses significant anti-inflammatory effects, which implies that it would be one of the major contributing components to participate in the anti-inflammatory effect of A. paniculata. and a potential candidate for further clinical trial.
We investigated the effects of Chikuyou-Sekkou-To (TJS-167), a traditional Chinese herbal medicine, on changes in eating behavior and rectal temperature induced by administration of tumor necrosis factor-α (TNF-α) in rats. Infusion of TNF-α into the third cerebral ventricle in doses of 1 to 4 μg/rat suppressed 24-hour cumulative food and water intake dose-dependently, compared to an infusion of phosphate-buffered saline (PBS) (p < 0.05 for each). The infusion of 2 μg/rat TNF-α into the third cerebral ventricle elevated rectal temperature compared to PBS controls (p < 0.05). In rats fed diets containing TJS-167 (1.38 g/kg/day) for 1 week, the suppressive effect of TNF-α (2 μg/rat) on food intake was alleviated significantly, compared to rats fed a standard diet (p < 0.05). The elevation of rectal temperature induced by TNF-α was attenuated significantly in the TJS-167-treated group compared to the control (p < 0.05). These results indicate that oral administration of TJS-167 may be effective in preventing or reducing TNF-α-induced inflammatory responses, such as appetite loss and elevation of body temperature.
We investigated the inhibitory effect of the conditioned medium (CM) from P338D1 (D1) cells, a murine macrophage cell line, stimulated for 10 hours with a fixed dose (100 μg/ml) of the extracts from the fruit bodies of Grifola frondosa (ME) or its ultra filtration-based fractions (MFs), on the growth of influenza A/Aichi/2/68 virus in Madin-Darby canine kidney cells. Direct addition of ME and 3 kinds of MFs (MF1, MF2 and MF3) to the infected cells had no obvious inhibitory effect. However, virus yields were reduced in the presence of CMs. Notably, the inhibitory effect of the CM prepared by using MF2 (molecular weight of 30 Kd to 100 Kd) was the strongest (28% reduction compared to the control). RT-PCR and ELISA assays showed that the CMs could induce the expression of TNF-α mRNA in D1 cells leading to production of TNF-α, known as an antiviral cytokine. These findings suggest that ME and MFs (especially MF-2) might induce the production of certain factors, including TNF-α, which are responsible for the inhibition of viral growth in vitro.
The effects of extract of Paederia scandens (LOUR.) MERRILL (Rubiaceae) (EPS), a Chinese traditional herbal medicine, on inflammatory and immune responses and their mechanisms in MSU crystals-induced (GA) rats were studied. GA rats were established. Ankle joint volume of rats was measured by volume meter; the level of TNF-α and IL-1β was determined by radioimmunoassay. mRNA expressions of TNF-α and IL-1β in synovial tissue of GA rats were analyzed by RT-PCR, and the expression of NF-κB was detected by immunohistochemistry. The administration of EPS (2.25, 4.5 g/kg, ig 9 days) inhibited the inflammatory response in GA rats. The mRNA expressions of TNF-α and IL-1β were also significantly suppressed in synovial tissue. In addition, EPS (2.25, 4.5 g/kg, ig 9 days) inhibited the expression of TNF-α and IL-1β and the biological activity of NF-κB. These results suggested that EPS possesses antiinflammatory effects by modulating pro-inflammatory mediators' production in synovial tissue and inactivating NF-κB pathway transmembrane signal transduction which plays a crucial role in the pathogenesis of this disease.
This study was conducted to explore the abortifacient effect and the mechanisms of the Chinese herbal medicine component toosendanin, and to elucidate the significance of the Th1 cytokines IFN-γ and TNF-α, CD4+ and CD8+ T lymphocytes in the occurrence of abortion. Graded doses of toosendanin were given by intraperitoneal injection (i.p.) to mice at day 5, 6, 7 of gestation. The levels of Th1 cytokines (IFN-γ, TNF-α) in serum and uterine tissues from mice sacrificed at day 8 were analyzed by enzyme linked immunosorbent assay (ELISA). Presence of T lymphocytes in endometrium was detected by immunohistochemistry. The results revealed that injection of toosendanin could produce a dose-dependent toxicity. The IFN-γ, TNF-α content in serum and uterine tissues were increased significantly. The CD4+ and CD8+ T lymphocytes were also increased in the endometrium of toosendanin treated groups. In conclusion, toosendanin is pregnancy-toxic to animals and it is relevant to the increased contents of IFN-γ, TNF-α and CD4+, CD8+ T lymphocytes.
Solanum nigrum L., commonly known as black nightshade, is used worldwide for the treatment of skin and mucosal ulcers, liver cirrhosis and edema. We aimed to determine the anti-inflammatory active fraction of S. nigrum by serial extractions. S. nigrum was first extracted with methanol, then fractionated with chloroform and water. The effects of S. nigrum fractions, diosgenin and α-solanine on LPS/interferon-gamma-induced nitric oxide (NO) and inducible NO synthase (iNOS), or LPS-induced tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, in mouse peritoneal macrophages were determined. Western blotting analysis was used to detect LPS-induced phosphorylation of p38, JNK and ERK1/2. The chloroform fraction of S. nigrum was cytotoxic in a time and concentration dependent manner; however, the methanol and water fractions were not. The chloroform fraction reduced NO through inhibition of iNOS synthesis and inhibited TNF-α and IL-6 at the level of protein secretion; the methanol and water fractions showed a weak or no effect. The chloroform fraction also suppressed p38, JNK and ERK1/2. Diosgenin and α-solanine were cytotoxic at a high concentration. In particular, diosgenin was able to inhibit TNF-α and IL-6, but both compounds did not affect LPS-induced iNOS expression. These results indicate that the anti-inflammatory compounds of S. nigrum exist preferentially in the nonpolar fraction, ruling out the possibility that diosgenin and α-solanine are the likely candidates. The inhibition of iNOS, TNF-α and IL-6 by the chloroform fraction may be partly due to the suppression of p38, JNK and ERK1/2. Further study is required to identify the active compounds of S. nigrum.
The regulatory effect of Liuwei Dihuang Pills (LDP) was studied on cytokines in mice with experimental autoimmune encephalomyelitis (EAE), a model for human multiple sclerosis (MS), induced by immunization with MOG35-55 and complete Freund's adjuvant (CFA) supplemented with pertussis toxin (PTX). LDP was administrated orally for 40 days, and prednisone acetate (PA) was used as a control. The pathological changes in the spinal cords of mice were observed by light microscope with hematoxylin-eosin (HE) staining and transmission electron microscope (TEM). The protein and mRNA expression of tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) in the spinal cords were assessed by immunohistochemistry and RT-PCR assay, and the cyclic adenosine monophosphate (cAMP) in mice plasma was measured by radioimmunoassay (RIA) on days 12, 25 and 40 post-immunization (PI). The results showed that inflammatory cells, demyelination and axonal loss were reduced, and that the protein and mRNA expression of TNF-α and the ratio of TNF-α/TGF-β were obviously decreased, to different extents. However, the levels of cAMP were enhanced in LDP-treated groups. These findings suggested that LDP regulates the cytokine balance in favor of T helper 1 (Th1)/regulatory T (Treg) cells, which depend on enhancement of cAMP levels. LDP has a potential role in the treatment of MS and other demyelinating diseases of the central nervous system.
Alcoholic fatty liver (AFL) is a reversible condition, but it can potentiate the development of alcoholic hepatitis and even cirrhosis by increasing oxidant generation, which is one of the key pathogenic factors and could result in alcoholic liver disease (ALD). Total flavonoids from Litsea coreana (TFLC), an active component extracted from Litsea coreana leve, have been shown to have therapeutic effects on hyperlipidemia. The present study was to evaluate the protective effects of TFLC on alcoholic fatty liver (AFL) in rats, and investigate the potential mechanism. An AFL model in rats was established by intaking different doses of alcohol (concentration from 5% to 40%) over 12 weeks. Serum levels of TG, TC, LDL-C, HDL-C, TNF-α, insulin, and glucose were measured, histopathologic changes were determined, and expression of adipose differentiation-related protein (ADRP) in the liver were evaluated by Western blotting and immunohistochemistry, respectively. The results showed that treatment with TFLC resulted in decreased serum levels of TG, TC, LDL-C, TNF-α, glucose and insulin, as well as improved liver index. Morphological evaluation revealed rats in model group developed a severe steatosis, but the severities of liver steatosis were effectively ameliorated in TFLC (200 and 400 mg/kg) treated groups. Expression of hepatic ADRP were increased in model group, and suppressed in TFLC treated groups. These results suggest that TFLC had a protective effect on AFL rats; the mechanism may be involved in regulation serum lipid profiles via down-regulation of hepatic expression of ADRP in AFL rats.
Actinidia callosa var. ephippioides (ACE) has been widely used to treat anti-pyretic, antinociceptive, anti-inflammation, abdominal pain and fever in Taiwan. This study aims to determine the mechanism of anti-inflammatory activities of ethyl acetate fraction of ACE (EA-ACE) using a model of λ-carrageenan (Carr)-induced paw edema in mouse model. In HPLC analysis, chemical characterization of EA-ACE was established. In order to investigate the anti-inflammatory mechanism of EA-ACE, we have detected the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and the levels of malondialdehyde (MDA) in the paw edema. Serum NO, tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) were evaluated. Chemical characterization from HPLC indicated that EA-ACE contains betulinic acid, ursolic acid and oleanolic acid. In the anti-inflammatory test, EA-ACE decreased the paw edema after Carr administration, increased the activities of CAT, SOD, and GPx and decreased the MDA level in the edema paw at the 5th hr after Carr injection. EA-ACE affects the serum NO, TNF-α, and IL-1β levels at the 5th hr after Carr injection. EA-ACE decreased Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions by Western blotting. Actinidia callosa var. ephippioides have the potential to provide a therapeutic approach to inflammation-associated disorders.
Macrophages play a crucial role in rheumatoid arthritis (RA). Their activation is the initial step of RA. This study was designed to detect the effects of total flavonoids from Litsea coreana Levl. (TFLC) on the complete Freund's adjuvant-induced (CFA-induced) arthritis (AA) in rats and to explore whether inflammatory cytokines were induced by the IRE1/mTORC1/TNF-α-dependant mechanism in peritoneal macrophages. In vivo, our data indicated that TFLC (100, 200 mg/kg, i.g. × 10 days) could significantly suppress secondary paw swelling and serum levels of TNF-α and IL-1β. Histopathological figures showed that TFLC treatment improved the morphologic changes of articular cartilages and synovium. Results of RT-PCR and western blotting demonstrated that TFLC suppressed expression of 78-KD glucose regulated protein (GRP78), X-box binding protein 1 (XBP1), mTOR complex 1 (mTORC1) and TNF-α in peritoneal macrophages of AA rats. Collectively, these results indicate that TFLC is able to ameliorate adjuvant-induced arthritis in a dose-dependent manner by suppressing the IRE1/mTORC1/TNF-α-regulated inflammatory response initiated in peritoneal macrophages.
Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.
In this study, we have investigated the anti-inflammatory effects of trilinolein (TL) using a lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with different concentrations of TL together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1 (IL-1β), and IL-6 production was detected. Western blotting revealed that TL blocked the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), IκBα, and mitogen-activated protein kinases (MAPKs). In the anti-inflammatory test, TL decreased the paw edema at the 5th h after λ-Carr administration in paw edema. We also demonstrated TL significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5th h after Carr injection. TL decreased the NO and TNF-α levels on the serum level at the 5th h after Carr injection. Western blotting revealed that TL decreased Carr-induced iNOS and COX-2 expressions at the 5th h in the edema paw. The anti-inflammatory mechanisms of TL might be related to the decrease in the level of iNOS, COX-2, IκBα, and MAPK pathway through the suppression of TNF-α, IL-1β, and IL-6.
Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte–RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte–RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte–RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.
Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl/EtOH-induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D-GaIN)-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.
In recent years, berberine has increasingly become a topic of research as a treatment for diabetes due to its repair function, which recovers damaged pancreatic β cells. However, it is the complications of diabetes that seriously affect patients’ life quality and longevity, among which diabetic neuropathy and the consequent acute pain are the most common. In this study, we established STZ-induced diabetic models to observe whether berberine, a main constitute of Coptis chinensis Franch which has shown good hypoglycemic effects, could relieve diabetes-induced pain and explored its possible mechanism in rats and mice. Behavior assays showed increasing mechanical allodynia and thermal hyperalgesia thresholds by the Von Frey test and tail flick test during the treatment of berberine. It was found that the administration of berberine (20, 60 mg/kg; 30, 90 mg/kg) suppressed the expression of PKCε and TRPV1 which could be activated by hyperglycemia-induced inflammatory reaction. Our results also presented its capability to reduce the over expression of TNF-α in diabetic rats and mice. TNF-α is an inflammatory cytokine, which is closely related to diabetic peripheral neuropathy (DPN). Consequently, we supposed that berberine exerts its therapeutic effects in part by suppressing the inflammatory process and blocking the PKC pathway to inhibit TRPV1 activation, which damages neurons and causes diabetic pain.
Although ginseng (Panax ginseng C.A. Meyer) has received extensive attention in the treatment and prevention of type 2 diabetes mellitus (T2DM) in the past few decades, there are few studies on the complications of T2DM. At present, obesity-linked diabetic nephropathy (DN) has become the most prevailing element of the end-stage renal failure in the world. The aim of this work is to evaluate the ameliorative effects of ginsenoside Rh1 (G-Rh1) on DN induced by high fat diet plus streptozotocin (HFD/STZ) through some potential and combined mechanisms of action. The results showed that G-Rh1 treatment at 5 and 10 mg/kg for 8 weeks exerted excellent effects in controlling fasting blood glucose (FBG), improving glucose tolerance, and increasing insulin level. In addition, G-Rh1 effectively prevents the excessive production of advanced glycation end products (AGEs), a diabetic nephropathy marker, in HFD/STZ induced DN mice. Meanwhile, oxidation indicators including SOD, GSH, and MDA were improved by G-Rh1 treatment to varying degrees. It is worth noting that G-Rh1 not only inhibits the secretion of Nox1 and Nox4 in kidney tissues, but also has an inhibitory effect on inflammatory factors and NF-κB signaling pathway. Importantly, further in-depth research on molecular mechanisms provides vital evidence that the ameliorative effect of G-Rh1 on DN is related to the inhibition of apoptosis and the AMPK/PI3K/Akt signaling pathway. In summary, G-Rh1 may be of great value in improving the treatment of DN although more experimental data is needed.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to bone loss due to an imbalance of the bone turnover process that could be evaluated using bone turnover markers. Inflammation in RA is mainly mediated by Tumor necrosis factor-α (TNF-α) that will increase osteoclastogenesis. In recent studies, Dickkopf-1 (DKK-1) is a key regulatory pathway for bone formation that affects osteoblastogenesis. Objective: This study aims to examine the imbalance of the bone turnover process in RA patients. Methods: This was a cross-sectional study with 38 subjects of premenopausal women with RA. Serum levels of TNF-α, DKK-1, and bone turnover markers (CTx and P1NP) were investigated. Result: The median duration of RA in this study was 5 years with 60.5% of subjects in remission or with low disease activity. The median value of TNF-α was 10.6 pg/mL, the mean value of DKK-1 was 4027pg/mL, the mean value of CTx was 2.74ng/mL, and the mean value of P1NP was 34pg/mL. This study revealed a weak positive correlation between TNF-α and P1NP (r=0.36; p=0.03). Conclusion: This study found a low level of TNF-α, a high level of DKK-1, a high level of CTx and a low level of P1NP that indicates an imbalance of bone turnover process in RA patients that is in favor of bone resorption.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.