Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling

    In micro-cutting processes, process variables including cutting force, cutting temperature and drill-workpiece interfacing conditions (lubrication and interaction, etc.) significantly affect the tool wear in a dynamic interactive in-process manner. The resultant tool life and cutting performance directly affect the component surface roughness, material removal rate and form accuracy control, etc. In this paper, a multiscale multiphysics oriented approach to modeling and analysis is presented particularly on tooling performance in micro drilling processes. The process optimization is also taken account based on establishing the intrinsic relationship between process parameters and cutting performance. The modeling and analysis are evaluated and validated through well-designed machining trials, and further supported by metrology measurements and simulations. The paper is concluded with a further discussion on the potential and application of the approach for broad micro manufacturing purposes.