Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Effects of Toosendanin on Pregnancy and Uterine Immunity Alterations in Mice

    This study was conducted to explore the abortifacient effect and the mechanisms of the Chinese herbal medicine component toosendanin, and to elucidate the significance of the Th1 cytokines IFN-γ and TNF-α, CD4+ and CD8+ T lymphocytes in the occurrence of abortion. Graded doses of toosendanin were given by intraperitoneal injection (i.p.) to mice at day 5, 6, 7 of gestation. The levels of Th1 cytokines (IFN-γ, TNF-α) in serum and uterine tissues from mice sacrificed at day 8 were analyzed by enzyme linked immunosorbent assay (ELISA). Presence of T lymphocytes in endometrium was detected by immunohistochemistry. The results revealed that injection of toosendanin could produce a dose-dependent toxicity. The IFN-γ, TNF-α content in serum and uterine tissues were increased significantly. The CD4+ and CD8+ T lymphocytes were also increased in the endometrium of toosendanin treated groups. In conclusion, toosendanin is pregnancy-toxic to animals and it is relevant to the increased contents of IFN-γ, TNF-α and CD4+, CD8+ T lymphocytes.

  • articleNo Access

    Toosendanin Shows Potent Efficacy Against Human Ovarian Cancer through Caspase-Dependent Mitochondrial Apoptotic Pathway

    Toosendanin (TSN) is a triterpenoid extracted from the bark or fruits of Melia toosendan Sieb et Zucc, which is a traditional Chinese medicine and mainly grows in China and India. TSN has been verified to possess antitumor activities on various human cancers, whereas the effects of TSN on ovarian cancer (OC) has not been reported yet. Here, TSN was shown to significantly inhibit proliferation of SKOV3 and OVCAR3 cell lines in a dose- and time-dependent manner. Treatment of OC cells with TSN resulted in colony formation reduction, S and G2/M phase arrest, cell apoptosis, and dramatic decrease in mitochondrial membrane potential. Furthermore, TSN suppressed invasion and migration of OC cells. Research on molecular mechanism indicated that the above efficacy of TSN was associated with decreased expression of survivin, PARP-1, Bcl-2, Bcl-xl, caspase-3, caspase-9, MMP-2 and MMP-9 and increased expression of cleaved PARP-1, Bax, cleaved caspase-3 and cleaved caspase-9. Finally, in vivo results showed that TSN suppressed OC xenograft tumor growth by inducing apoptosis and regulating the related protein expression levels of SKOV3 cells in transplanted tumors. Taken together, our data provide new insights into TSN as a potentially effective reagent against human OC through caspase-dependent mitochondrial apoptotic pathway.