Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Weak Predation Strength Promotes Stable Coexistence of Predators and Prey in the Same Chain and Across Chains

    The mechanisms of species coexistence make ecologists fascinated, although theoretical work shows that omnivory can promote coexistence of species and food web stability, it is still a lack of the general mechanisms for species coexistence in the real food webs, and is unknown how omnivory affects the interactions between competitor and predator. In this work, we first establish an omnivorous food web model with a competitor based on two natural ecosystems (the plankton community and fig–fig wasp system). We analyze the changes of both food web structure and stability under the different resource levels and predation preference of the generalist/top predator. The results of model analyses show that weak predation strength can promote stable coexistence of predators and prey. Moreover, the evolutionary trend of food web structure changes with the relative predation strength is more diverse than the relative competition strength, and an integration of both omnivory, increased competition, top-down control and bottom-up control can promote species diversity and food web stability. Our theoretical predictions are consistent with empirical data in the plankton community: the lower concentration of nutrient results in a more stable population dynamics. Our theoretical work could enrich the general omnivorous theory on species coexistence and system stability in the real food webs.

  • articleNo Access

    EXPLORING THE ROLE OF VERTICAL HETEROGENEITY IN THE STABILIZATION OF PLANKTONIC ECOSYSTEMS UNDER EUTROPHICATION

    Understanding plankton dynamics in marine and lake ecosystems under eutrophication is currently a hot topic in the literature. Simple theoretical models predict appearance of large amplitude oscillations of species densities in nutrient-rich waters; however, such predictions do not always correspond to field observations. Recent models taking into account heterogeneity of the growth rate of phytoplankton and active food-searching behavior of zooplankton demonstrated that grazers can efficiently control phytoplankton densities at low values even for a high nutrient stock. In this paper, we extend the previous modeling findings on the role of fast-moving plankton grazers by exploring a more realistic case where the limiting nutrient is a dynamical variable. Thus, the growth of phytoplankton across the water column depends on both light attenuation and dynamical depletion of nutrients. We also consider a more realistic scenario of a depth-dependent vertical turbulent diffusion. Most of the previous results on stabilization of planktonic ecosystems still hold; however, some alternative mechanisms of bloom suppression can also be possible. In particular, we demonstrate that the foraging of zooplankton according to the ideal free distribution (IFD) of food (which was previously considered to be a crucial condition for stabilization) may be less stabilizing than random foraging of zooplankton. We also show that stable top-down control in the ecosystem would be highly dependent on values of vertical diffusion and on the nutrient concentration in deep layers.