System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Topological quivers are generalizations of directed graphs in which the sets of vertices and edges are locally compact Hausdorff spaces. Associated to such a topological quiver is a C*-correspondence, and from this correspondence one may construct a Cuntz–Pimsner algebra . In this paper we develop the general theory of topological quiver C*-algebras and show how certain C*-algebras found in the literature may be viewed from this general perspective. In particular, we show that C*-algebras of topological quivers generalize the well-studied class of graph C*-algebras and in analogy with that theory much of the operator algebra structure of can be determined from . We also show that many fundamental results from the theory of graph C*-algebras have natural analogues in the context of topological quivers (often with more involved proofs). These include the gauge-invariant uniqueness theorem, the Cuntz–Krieger uniqueness theorem, descriptions of the ideal structure, and conditions for simplicity.