Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The track irregularity spectrum of longitudinally connected ballastless track (LCBT)-bridge systems of high-speed railway was proposed in this paper. First, a simulation model of an LCBT-continuous girder bridge was established by considering the influences of approach bridges and subgrade with track structure. Further, a large number of sample analyses were carried out by taking into account the uncertainty of LCBT-bridge systems and stochastic behaviors of ground motions based on the simulation model. The damage laws of residual deformation of track-bridge system after earthquake actions were studied. Then, an interlayer deformation coordination relationship (IDCR) considering the track irregularity caused by earthquake-induced damage of bearings was developed, and the superposed track irregularity samples were obtained. Finally, by using the improved Blackman–Turkey method and Levenberg–Marquardt algorithm, the LCBT irregularity spectrum, track irregularity spectrogram, track irregularity limit spectrum, and a fitting formula for the track irregularity spectrum on a bridge after the action of earthquakes were obtained. Results obtained from the fitting formula and IDCR were compared, and they indicated that tracks undergone significant high-frequency irregularity diseases after the earthquake action. It was found that the track irregularity spectrum could be roughly divided into three ranges: high-, medium- and low-frequency wavebands. Consequently, this led to an application of a three-segment power function for the fitting of the track irregularity spectrum after the earthquake action. The track irregularity spectrum after the action of earthquakes provides an important theoretical basis for the establishment of seismic design methods for high-speed railway bridges based on the traffic safety performance.
Railway transportation, as an important lifeline during earthquake relief and post-disaster reconstruction, has an extremely significant role. The study of track irregularity caused by earthquakes is the basis for ensuring traffic safety after their occurrence. In this paper, a finite element model of a five-span simply supported high-speed railway beam bridge with the China Railway Track System (CRTS) II was established and an experimental verification was performed. Eighty arbitrarily selected seismic waves were extracted from the Pacific Earthquake Engineering Research Center (PEER) strong ground motion database and a nonlinear time-history analysis was performed on the finite element model. The frequency–domain distribution law of earthquake-induced track irregularities was studied. A stable target earthquake-induced track irregularity spectrum model was constructed, and its expression was fitted. According to the results, in the case of transverse earthquakes, the rails experienced noticeable alignment irregularity and cross-level irregularity, while the amplitude of the gauge and vertical irregularity were relatively small. The target irregularity spectrum has a higher amplitude in the low-frequency components. When peak ground acceleration (PGA) was low, earthquake-induced track irregularity was not obvious, but the deteriorating effects of earthquakes on track irregularities increased significantly with increasing PGA.