Investigating on Pólya groups [P. J. Cahen and J. L. Chabert Integer-Valued Polynomials, Mathematical Surveys and Monographs, Vol. 48 (American Mathematical Society, Providence, 1997)] in non-Galois number fields, Chabert [J. L. Chabert and E. Halberstadt, From Pólya fields to Pólya groups (II): Non-Galois number fields, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.06.008] introduced the notion of pre-Pólya group Po(−)nr, which is a generalization of the pre-Pólya condition, duo to Zantema [H. Zantema, Integer valued polynomials over a number field, Manuscripta Math.40 (1982) 155–203]. In this paper, using class field theory, we describe the pre-Pólya group of a Dn-field K, for n≥4 an even integer, where Dn denotes the dihedral group of order 2n. Moreover, for special case n=4, we improve the Zantema’s upper bound on the maximum ramification in Pólya D4-fields.