Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Flight vehicles experience aeroelastic problems due to the interaction between structures and aerodynamic forces. Aeroelastic instability is usually a critical problem in transonic and lower supersonic regions. In present study, the aeroelastic analyses of several flight vehicles have been performed using the coupled techniques of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The aeroelastic characteristics based on several aircraft models are investigated using the developed aeroelastic analysis system. On the other hand, structural nonlinearities always exist in flight vehicles. Structural nonlinearities such as freeplay and large deformation effects are considered in the present aeroelastic analysis system. Finally, aeroelastic characteristics of several flight vehicles will be explained considering both aerodynamic and structural nonlinearities.
Aerodynamic solver using the transonic small-disturbance (TSD) equation has frequently been used to perform practical aeroelastic analysis for many aircraft models. In the present study, the more accurate aeroelastic analysis solver using the TSD equation was developed by considering the viscous effects of the boundary-layer. The viscous effects were considered using Green's lag-entrainment equations and an inverse boundary-layer method. Through aerodynamic analyses for several aircraft wings, the viscous-inviscid interaction approach could improve the accuracy of the aerodynamic computation using the TSD equation. Finally, the aeroelastic characteristics were investigated using comparisons of the time responses between the inviscid and viscous flows.