Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The triangle partition problem is a generalization of the well-known graph matching problem consisting of finding the maximum number of independent edges in a given graph, i.e., edges with no common node. Triangle partition instead aims to find the maximum number of disjoint triangles. The triangle partition problem is known to be NP-complete. Thus, in this paper, the focus is on the local maximization variant, called maximal triangle partition (MTP). Thus, paper presents a new self-stabilizing algorithm for MTP that converges in O(m) moves under the unfair distributed daemon.
Centralized matching programs have been established in several countries to organize kidney exchanges between incompatible patient-donor pairs. At the heart of these programs are algorithms to solve kidney exchange problems, which can be modelled as cycle packing problems in a directed graph, involving cycles of length 2, 3, or even longer. Usually, the goal is to maximize the number of transplants, but sometimes the total benefit is maximized by considering the differences between suitable kidneys. These problems correspond to computing cycle packings of maximum size or maximum weight in directed graphs. Here we prove the APX-completeness of the problem of finding a maximum size exchange involving only 2-cycles and 3-cycles. We also present an approximation algorithm and an exact algorithm for the problem of finding a maximum weight exchange involving cycles of bounded length. The exact algorithm has been used to provide optimal solutions to real kidney exchange problems arising from the National Matching Scheme for Paired Donation run by NHS Blood and Transplant, and we describe practical experience based on this collaboration.