Seawall is a most commonly used structure in coastal areas to protect the landscape and coastal facilities. The studies of interactions between the tsunami-like solitary waves and the seawalls are relatively rare in the literature. In this study, a three-dimensional numerical model based on OpenFOAM® was developed to investigate the tsunami-like solitary waves propagating over a rectangular seawall. The Navier–Stokes equations for two-phase incompressible flow, combining with methods of k−ε for turbulence closure and Volume of Fluid (VOF) for tracking the free surface, were solved. Laboratory experiments were performed to measure some of the hydrodynamic feature associated with solitary waves. The model was then validated by the laboratory data, and good agreements were found for free surface, velocity and dynamic pressure around the seawall. Finally, a series of numerical experiments were conducted to analyze the evolution of both wave and flow fields, the overtopping discharge as well as wave pressure (force) around the seawall, special attention is given to the effects of seawall crest width. Our findings will help to improve the understanding in the occurrences of tsunami-induced damages in the vicinity of seawall such as wave impact and local scouring.