Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we construct and analyze a two-well Hamiltonian on a 2D atomic lattice. The two wells of the Hamiltonian are prescribed by two rank-one connected martensitic twins, respectively. By constraining the deformed configurations to special 1D atomic chains with position-dependent elongation vectors for the vertical direction, we show that the structure of ground states under appropriate boundary conditions is close to the macroscopically expected twinned configurations with additional boundary layers localized near the twinning interfaces. In addition, we proceed to a continuum limit, show asymptotic piecewise rigidity of minimizing sequences and rigorously derive the corresponding limiting form of the surface energy.