Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper we present a new approach to describe the behaviour of a pollutant slick at the sea surface. To this end, we consider that the pollutant and the water are immiscible and we propose a two-layer model where the lower layer corresponds to the water and the upper layer represents the pollutant. Since the dimension of the pollutant slick is generally much smaller than the domain occupied by the sea, we propose to compute the motion of the pollutant with a shallow water model with free boundary only in the domain occupied by the pollutant. To discretize in time the problem with free boundary, we use an ALE formulation coupled with the characteristic method. Then, to solve the space discretized problem, we approximate the pollutant velocity by using a Galerkin method with a special basis which verifies the boundary conditions and simplifies significantly the resolution. Finally we test this work in a real situation: the dam of Calacuccia (Corsica).
The contrast mechanism of different polarization imaging techniques for melanoma in mouse skin is studied using both experiments and Monte Carlo simulations. Total intensity, linear polarization difference imaging (DPI), degree of polarization imaging (DOPI) and rotating linear polarization imaging (RLPI) are applied and the relative contrasts of these polarization imaging methods between the normal and cancerous tissues are compared. A two-layer absorption-scattering model is proposed to explain the contrast mechanism of the polarization imaging for melanoma. By taking into account of both scattering of symmetrical and asymmetrical scatterers and absorption of inter-scatterer medium, the two-layer model reproduces the relative contrasts for polarization images observed in experiments. The simulation results also show that, the parameters of polarization imaging change more dramatically with the variation of absorption in the bottom layer than the top layer.