Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Ultrasonic nanocrystal surface modification (UNSM) has applied to a radial journal bearings made of bearing steel SUJ2. Mechanical characteristics are compared between UNSM treated and untreated bearings. Friction torque is measured at the boundary lubrication condition, the mixed lubrication condition, and the full hydrodynamic lubrication condition. The peak torque at the boundary lubrication condition and the transition period to mixed lubrication condition on the UNSM treated samples are reduced. These effects are very useful to improve the service life of journal bearings. The Stribeck curve at the mixed and full hydrodynamic lubrication is derived and compared. The friction coefficient at these two regimes is reduced by more than 50%, which will do effective role for improvement of energy efficiency. The major effects for this reduction at three lubrication regimes could be explained in the terms of micro dimple surface.
The changing of materials surface properties method always was taken into improving the fatigue strength. In this paper, an ultrasonic nanocrystal surface modification(UNSM) technique was used on the SUS 304 stainless steel to form a nanostructured surface layer with different static load(70N, 90N, 110N, 130N) and the vibration strike number was about 20,000times/mm2. The untreated and different condition specimens fatigue strength was all tested by a dual-spindle rotating bending fatigue test machine. SPring-8(a large synchrotron radiation facility) was used to test the surface nanocrystallization components. The X-ray diffraction (XRD), the scanning electron microscopy (SEM), optical microscope and a micro-Vickers hardness tester (MVK-E3, Akashi) were separately used to get the surface residual stresses, fracture surface after fatigue testing, metallographic structure and the microhardness of the nanostructured surface layer. The result showed that martensite transformation took place on the surface of specimens, the surface residual stresses had only a small increase and some cracks occurred between the martensite layer and the austenite layer, but the fatigue strength of 90N improved 81%.