Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Ideal structure of rings of analytic functions with non-Archimedean metrics

    The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345–356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179–184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711–720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d’une function analytique d’une variable sur un corps value complet, Publ. Math. l’IHES 14(1) (1942) 47–75].

  • articleNo Access

    SPACES OF SMALL METRIC COTYPE

    Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.

  • articleNo Access

    ZEROS OF ULTRAMETRIC MEROMORPHIC FUNCTIONS f′ fn(f − a)k − α

    Let 𝕂 be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. Similarly to the Hayman problem, here we study meromorphic functions in 𝕂 or in an open disk that are of the form f′ fn(f − a)k − α with α a small function, in order to find sufficient conditions on n, k assuring that they have infinitely many zeros. We first define and characterize a special value for a meromorphic function and check that, if it exists, it is unique. So, such values generalize Picard exceptional values.

  • chapterNo Access

    TOPOLOGICAL APPROACHES TO SEARCH AND MATCHING IN MASSIVE DATA SETS

    We begin with pervasive ultrametricity due to high dimensionality and/or spatial sparsity. How extent or degree of ultrametricity can be quantified leads us to the discussion of varied practical cases when ultrametricity can be partially or locally present in data. We show how the ultrametricity can be assessed in time series signals. An aspect of importance here is that to draw benefit from this perspective the data may need to be recoded. Such data recoding can also be powerful in proximity searching, as we will show, where the data is embedded globally and not locally in an ultrametric space.

  • chapterNo Access

    FAST REDSHIFT CLUSTERING WITH THE BAIRE (ULTRA) METRIC

    The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwise regression for this.