Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    MULTIPLE PARAMETER CONTINUATION: COMPUTING IMPLICITLY DEFINED k-MANIFOLDS

    We present a new continuation method for computing implicitly defined manifolds. The manifold is represented as a set of overlapping neighborhoods, and extended by an added neighborhood of a boundary point. The boundary point is found using an expression for the boundary in terms of the vertices of a set of finite, convex polyhedra. The resulting algorithm is quite simple, allows adaptive spacing of the computed points, and deals with the problems of local and global overlap in a natural way. The algorithm is robust (the new points need only be near the boundary), and is well suited to problems with large embedding dimension, and small to moderate dimension.